Sensory Substitution of Vision: A Systematic Mapping and a Deep Learning Object Detection Proposition

被引:2
|
作者
Lima, Elze P. N. [1 ]
Costa, Ronaldo M. [1 ]
Fernandes, Deborah S. A. [1 ]
Soares, Fabrizzio A. A. M. N. [2 ]
机构
[1] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
[2] Southern Oregon Univ, Dept Comp Sci, Ashland, OR USA
来源
2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019) | 2019年
关键词
Vision Substitution; Computer Vision; Assistive Technologies; Visual Impairment; Object Detection; Deep Learning; Tensor Flow Lite; Mobile; IMPAIRMENT; BLINDNESS; DISTANCE;
D O I
10.1109/ICTAI.2019.00274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since 1946 methods for sensory substitution of vision has been studied; however, half a century after the beginning of this line of research, this keep been a massive problem in a world with about 50.6 million people with irreversible blindness. This research presents how self-help devices for visually impaired are approach in recent years and proposes a new approach based on object recognition with deep learning. Through it, it is possible to perceive the trends in this line of research, how devices obtain information from the environment, how they interact with users, and other aspects - pointing essential factors to all those who research or wish to study this area.
引用
收藏
页码:1815 / 1819
页数:5
相关论文
共 50 条
  • [1] Deep learning based UAV vision object detection and tracking
    Pu, Liang
    Zhang, Xuejun
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (05): : 872 - 880
  • [2] Vision Substitution with Object Detection and Vibrotactile Stimulus
    Ribani, Ricardo
    Marengoni, Mauricio
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 584 - 590
  • [3] Vision Sensory Substitution to Aid the Blind in Reading and Object Recognition
    Bhat, Pranab Gajanan
    Rout, Deepak Kumar
    Subudhi, Badri Narayan
    Veerakumar, T.
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 432 - 437
  • [4] Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review
    Amjoud, Ayoub Benali
    Amrouch, Mustapha
    IEEE ACCESS, 2023, 11 : 35479 - 35516
  • [5] Systematic Review of Emotion Detection with Computer Vision and Deep Learning
    Pereira, Rafael
    Mendes, Carla
    Ribeiro, Jose
    Ribeiro, Roberto
    Miragaia, Rolando
    Rodrigues, Nuno
    Costa, Nuno
    Pereira, Antonio
    SENSORS, 2024, 24 (11)
  • [6] Intrusion Detection Systems with Deep Learning: A Systematic Mapping Study
    Osken, Sinem
    Yildirim, Ecem Nur
    Karatas, Gozde
    Cuhaci, Levent
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [7] Human Object Detection in Forest with Deep Learning based on Drone's Vision
    Yong, Suet-Peng
    Yeong, Yoon-Chow
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2018,
  • [8] A Computer Vision Model for Seaweed Foreign Object Detection Using Deep Learning
    Zhang, Xiang
    Alhendi, Omar
    Ab Hamid, Siti Hafizah
    Japar, Nurul
    Nor, Adibi M.
    SUSTAINABILITY, 2024, 16 (20)
  • [9] Vision-based Deep Learning algorithm for Underwater Object Detection and Tracking
    Alla, Durga Nooka Venkatesh
    Jyothi, V. Bala Naga
    Venkataraman, H.
    Ramadass, G. A.
    OCEANS 2022, 2022,
  • [10] A systematic review of object detection from images using deep learning
    Jaskirat Kaur
    Williamjeet Singh
    Multimedia Tools and Applications, 2024, 83 : 12253 - 12338