Positivity of constants related to elliptic curves

被引:0
|
作者
Kim, Sungjiii
机构
关键词
Elliptic curves; Density; Distribution; MOD-P; CYCLICITY; POINTS;
D O I
10.1016/j.jnt.2015.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve defined over Q. It is known that the structure of the reduction E(F-P) is E(F-P) similar or equal to Z/d(p)Z circle plus Z/e(p)Z (1) with d(p)vertical bar e(p). The constant C-E,C-j = Sigma(infinity)(k=1) mu(k)/[Q(E[jk]) : Q] appears as the density of primes p with good reduction for E and d(p) = j (under the GRH in the non-CM case, unconditionally in the CM case). We give appropriate conditions for this constant to be positive when j > 1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [1] Frobenius constants for families of elliptic curves
    Roy, Bidisha
    Vlasenko, Masha
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (04): : 1571 - 1595
  • [2] Constants in Titchmarsh divisor problems for elliptic curves
    Bell, Renee
    Blakestad, Clifford
    Cojocaru, Alina Carmen
    Cowan, Alexander
    Jones, Nathan
    Matei, Vlad
    Smith, Geoffrey
    Vogt, Isabel
    RESEARCH IN NUMBER THEORY, 2019, 6 (01)
  • [3] Constants in Titchmarsh divisor problems for elliptic curves
    Renee Bell
    Clifford Blakestad
    Alina Carmen Cojocaru
    Alexander Cowan
    Nathan Jones
    Vlad Matei
    Geoffrey Smith
    Isabel Vogt
    Research in Number Theory, 2020, 6
  • [4] COMPUTING LOCAL CONSTANTS FOR CM ELLIPTIC CURVES
    Chetty, Sunil
    Li, Lung
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) : 853 - 863
  • [5] Elliptic curves related with triangles
    Kwon, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (06) : 118 - 120
  • [6] Quadratic algebras related to elliptic curves
    Zotov, A. V.
    Levin, A. M.
    Olshanetsky, M. A.
    Chernyakov, Yu. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 156 (02) : 1103 - 1122
  • [7] Quadratic algebras related to elliptic curves
    A. V. Zotov
    A. M. Levin
    M. A. Olshanetsky
    Yu. B. Chernyakov
    Theoretical and Mathematical Physics, 2008, 156 : 1103 - 1122
  • [8] COMPARING LOCAL CONSTANTS OF ORDINARY ELLIPTIC CURVES IN DIHEDRAL EXTENSIONS
    Chetty, Sunil
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2016, 54 (02) : 241 - 250
  • [9] REPRESENTATIONS RELATED TO CM ELLIPTIC-CURVES
    BOSTON, N
    ULLOM, SV
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 : 71 - 85
  • [10] ELLIPTIC CURVES RELATED TO CYCLIC CUBIC EXTENSIONS
    Kozuma, Rintaro
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (04) : 591 - 623