QUENCHED LARGE DEVIATIONS FOR ONE DIMENSIONAL NONLINEAR FILTERING

被引:4
|
作者
Pardoux, Etienne [1 ,2 ]
Zeitouni, Ofer [3 ,4 ,5 ]
机构
[1] Univ Aix Marseille 1, LATP, F-13453 Marseille 13, France
[2] CMI, CNRS, F-13453 Marseille 13, France
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[4] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[5] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
nonlinear filtering; large deviations;
D O I
10.1137/S0363012903365032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the standard, one dimensional, nonlinear filtering problem for diffusion processes observed in small additive white noise: dX(t) = b(X-t)dt + dB(t), dY(t)(epsilon) = gamma(X-t)dt + epsilon dV(t), where B., V. are standard independent Brownian motions. Denote by q(1)(epsilon)(.) the density of the law of Xi(1) conditioned on sigma(Y-t(epsilon) : 0 <= t <= 1). We provide "quenched" large deviation estimates for the random family of measures q(1)(epsilon)(x)dx: there exists a continuous, explicit mapping (J) over bar : R-2 -> R such that for almost all B., V., (J) over bar(., X-1) is a good rate function, and for any measurable G subset of R, -inf(x is an element of Go) (J) over bar (x, X-1) <= lim(epsilon -> 0) inf epsilon log integral(G) q(1)(epsilon)(x)dx <= lim(epsilon -> 0) sup epsilon log integral(G) q(1)(epsilon)(x)dx <= - inf(x is an element of(G) over bar)(J) over bar (x, X-1).
引用
收藏
页码:1272 / 1297
页数:26
相关论文
共 50 条