ERGODICITY FOR INFINITE PARTICLE SYSTEMS WITH LOCALLY CONSERVED QUANTITIES

被引:9
|
作者
Inglis, J. [1 ]
Neklyudov, M. [2 ]
Zegarlinski, B. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ York, Dept Math, Heslington, England
[3] Ctr Natl Rech Sci, Toulouse, France
基金
英国工程与自然科学研究理事会;
关键词
Hormander-type generators; locally conserved quantities; Liggett-Nash inequality; ergodicity; COERCIVE INEQUALITIES; HARMONIC-OSCILLATORS; EQUILIBRIUM; CONVERGENCE; THEOREM;
D O I
10.1142/S0219025712500051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse degenerate infinite-dimensional sub-elliptic generators, and obtain estimates on the long-time behaviour of the corresponding Markov semigroups that describe a model of heat conduction. In particular, we establish ergodicity of the system for a family of invariant measures, and show that the optimal rate of convergence to equilibrium is polynomial. Consequently, there is no spectral gap, but a Liggett-Nash-type inequality is shown to hold.
引用
收藏
页数:28
相关论文
共 50 条