Extensibility Effects on Euler Elastica's Stability

被引:8
|
作者
Jin, M. [1 ]
Bao, Z. B. [2 ]
机构
[1] Beijing Jiaotong Univ, Coll Civil Engn, Dept Mech, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Coll Comp Sci & Technol, Beijing 100044, Peoples R China
基金
美国国家科学基金会;
关键词
Extensibility; Elastica; Stability; Conjugate; CONJUGATE-POINTS; ROD;
D O I
10.1007/s10659-012-9407-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the conjugate point theory in calculus of variations, the extensibility effects on the stability of Euler elasticas with one clamped end and the other clamped in rotation in the post-buckling are investigated. For a slender rod, it is shown that: (1) the buckling load is a little bigger than Euler critical load, (2) the addition of extensibility to the elastica does not affect its stability in the post-buckling, in the sense that those Euler elasticas with one inflexion point are stable while those Euler elasticas with more than one inflexion point are unstable.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 50 条
  • [1] Extensibility Effects on Euler Elastica’s Stability
    M. Jin
    Z. B. Bao
    Journal of Elasticity, 2013, 112 : 217 - 232
  • [2] Dynamic stability of Euler's elastica
    Vratanar, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S827 - S828
  • [3] Complete solution of the stability problem for elastica of Euler's column
    Kuznetsov, VV
    Levyakov, SV
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (06) : 1003 - 1009
  • [4] EULER'S ELASTICA AND BEYOND
    Matsutani, Shigeki
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2010, 17 : 45 - 86
  • [5] On the Cauchy problem for a dynamical Euler's elastica
    Burchard, A
    Thomas, LE
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) : 271 - 300
  • [6] Instability of solitary waves on Euler's elastica
    Il'ichev, Andrej T.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (04): : 547 - 566
  • [7] Neural networks for the approximation of Euler's elastica
    Celledoni, Elena
    Cokaj, Ergys
    Leone, Andrea
    Leyendecker, Sigrid
    Murari, Davide
    Owren, Brynjulf
    de Almagro, Rodrigo T. Sato Martin
    Stavole, Martina
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [8] On gradient flows with obstacles and Euler's elastica
    Mueller, Marius
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [9] Variational discretization of Euler's Elastica problem
    Sogo, Kiyoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (06)
  • [10] Instability of solitary waves on Euler’s elastica
    Andrej T. Il’ichev
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2006, 57 : 547 - 566