Stabilization of an Euler-Bernoulli beam with input delay in the boundary control

被引:44
|
作者
Shang, Ying Feng [1 ]
Xu, Gen Qi [1 ]
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
关键词
Euler-Bernoulli beam; Input delay; Feedback control; Exponential stability; SMALL TIME DELAYS; EVOLUTION-EQUATIONS; WAVE-EQUATION; STABILITY; RESPECT; SYSTEMS; TERM;
D O I
10.1016/j.sysconle.2012.07.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a cantilever Euler-Bernoulli beam with controller delay. Suppose that the output of the boundary controller is of the form alpha u(t) + beta u(t-tau), where u(t) is the controller input. It is well known that a system with a collocated feedback control law is exponentially stable if beta = 0, and it is unstable with the same control law when alpha = 0. In the present paper, we shall design a dynamic controller that makes the system stabilize exponentially for any vertical bar alpha vertical bar not equal vertical bar beta vertical bar and tau > 0. Furthermore, we discuss the stability of the system for vertical bar alpha vertical bar = vertical bar beta vertical bar. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1069 / 1078
页数:10
相关论文
共 50 条
  • [1] Stabilization of an Euler-Bernoulli beam with boundary input delay
    Liu, Xiaopei
    Xu, Genqi
    Chen, Hao
    [J]. ASIAN JOURNAL OF CONTROL, 2021, 23 (06) : 2750 - 2765
  • [2] Exponential Stabilization of Euler-Bernoulli Beam with Input Time-Delay in the Boundary Control
    Jilong Wu
    Yingfeng Shang
    [J]. Journal of Harbin Institute of Technology(New series), 2019, 26 (03) : 20 - 25
  • [3] Stability analysis of Euler-Bernoulli beam with input delay in the boundary control
    Shang, Ying Feng
    Xu, Gen Qi
    Chen, Yun Lan
    [J]. ASIAN JOURNAL OF CONTROL, 2012, 14 (01) : 186 - 196
  • [4] Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input
    Han, Zhong-Jie
    Xu, Gen-Qi
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2014, 31 (04) : 533 - 550
  • [5] Boundary control of an Euler-Bernoulli beam with input and output restrictions
    Liu, Zhijie
    Liu, Jinkun
    He, Wei
    [J]. NONLINEAR DYNAMICS, 2018, 92 (02) : 531 - 541
  • [6] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [7] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Fernandes, Marco A. A.
    Carneiro, Miriam S.
    Munoz Rivera, Jaime E.
    [J]. APPLICABLE ANALYSIS, 2020, 99 (16) : 2917 - 2926
  • [8] Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation
    Guo, Bao-Zhu
    Yang, Kun-Yi
    [J]. AUTOMATICA, 2009, 45 (06) : 1468 - 1475
  • [9] DYNAMIC BOUNDARY CONTROL OF A EULER-BERNOULLI BEAM
    MORGUL, O
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (05) : 639 - 642
  • [10] Control of Flexible Euler-Bernoulli Beam with Input/Output Delay and Stochastic Disturbances
    Cacace, F.
    Germani, A.
    Papi, M.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7593 - 7598