Finite energy superluminal solutions of Maxwell equations

被引:0
|
作者
de Oliveira, EC
Rodrigues, WA [1 ]
机构
[1] Univ Liverpool, Dept Math, Liverpool L69 3BX, Merseyside, England
[2] Univ Estadual Campinas, IMECC, Inst Math Stat & Sci Computat, BR-13083970 Campinas, SP, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We exhibit exact finite energy superluminal solutions of Maxwell equations in vacuum and discuss the physical meaning of these solutions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:367 / 370
页数:4
相关论文
共 50 条
  • [1] Finite energy superluminal solutions of Maxwell equations
    Capelas de Oliveira, E.
    Rodrigues Jr., W.A.
    [J]. 2001, Elsevier (291):
  • [2] Superluminal localized solutions to Maxwell equations propagating along a waveguide: The finite-energy case
    Zamboni-Rached, M
    Fontana, F
    Recami, E
    [J]. PHYSICAL REVIEW E, 2003, 67 (03):
  • [3] On the localized superluminal solutions to the Maxwell equations
    Recami, E
    Zamboni-Rached, M
    Nóbrega, KZ
    Dartora, CA
    Hernández, HE
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (01) : 59 - 73
  • [4] A set of new localized superluminal solutions to the Maxwell equations
    Rached, Michel Zamboni
    Recami, Erasmo
    [J]. Annales de la Fondation Louis de Broglie, 2002, 27 (02): : 187 - 216
  • [5] On localized `X-shaped' superluminal solutions to Maxwell equations
    Recami, Erasmo
    [J]. Physica A: Statistical Mechanics and its Applications, 1998, 252 (3-4): : 586 - 610
  • [6] On localized "X-shaped" Superluminal solutions to Maxwell equations
    Recami, E
    [J]. PHYSICA A, 1998, 252 (3-4): : 586 - 610
  • [7] Uniqueness of Finite Energy Solutions for Maxwell-Dirac and Maxwell-Klein-Gordon Equations
    Nader Masmoudi
    Kenji Nakanishi
    [J]. Communications in Mathematical Physics, 2003, 243 : 123 - 136
  • [8] Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations
    Masmoudi, N
    Nakanishi, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) : 123 - 136
  • [9] Superluminal localized solutions to the maxwell equations for vacuum and for dispersive media (with arbitrary frequencies and bandwidths)
    Rached, MZ
    Nóbrega, KZ
    Recami, E
    [J]. FREE AND GUIDED OPTICAL BEAMS, 2004, : 193 - 206
  • [10] Superluminal localized solutions to Maxwell equations propagating along a normal-sized waveguide
    Zamboni-Rached, Michel
    Recami, Erasmo
    Fontana, Flavio
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 066603