Two-and four-dimensional representations of the PT- and CPT-symmetricfermionic algebras

被引:6
|
作者
Beygi, Alireza [1 ]
Klevansky, S. P. [1 ]
Bender, Carl M. [2 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 12, D-69120 Heidelberg, Germany
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
NON-HERMITIAN HAMILTONIANS;
D O I
10.1103/PhysRevA.97.032128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T-2 = -1 for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators., which are quadratically nilpotent (eta(2) = 0), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations eta eta(PT) + eta(PT) eta = -1, where eta(PT) is the PT adjoint of eta, and eta eta(CPT) + eta(CPT) eta = 1, where eta(CPT) is the CPT adjoint of eta. This paper presents matrix representations for the operator eta and its PT and CPT adjoints in two and four dimensions. A PT-symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
引用
收藏
页数:6
相关论文
共 50 条