On the Yamabe constants of S2 x R3 and S3 x R2

被引:6
|
作者
Petean, Jimmy [1 ]
Ruiz, Juan Miguel [2 ]
机构
[1] CIMAT, Guanajuato 36000, Gto, Mexico
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Yamabe constants; Isoperimetric profile; INVARIANT GREATER-THAN; 3-MANIFOLDS; PRODUCTS; RP3;
D O I
10.1016/j.difgeo.2013.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the isoperimetric profiles of S-2 x R-3 and of S-3 x R-2 with that of a round 5-sphere (of appropriate radius). Then we use this comparison to obtain lower bounds for the Yamabe constants of S-2 x R-3 and S-3 x R-2. Explicitly we show that Y(S-3 x R-2, [g(0)(3) + dx(2)]) > (3/4)Y(S-5) and Y(S-2 x R-3, [g(2)(0) + dx(2)]) > 0.63Y(S-5). We also obtain explicit lower bounds in higher dimensions and for products of Euclidean space with a closed manifold of positive Ricci curvature. The techniques are a more general version of those used by the same authors in Petean and Ruiz (2011) [15] and the results are a complement to the work developed by B. Ammann, M. Dahl and E. Humbert to obtain explicit gap theorems for the Yamabe invariants in low dimensions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 50 条
  • [1] Rigidity for nonnegatively curved metrics on S2 x R3
    Tapp, K
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 25 (01) : 43 - 58
  • [2] Trajectory Optimization On Manifolds with Applications to SO(3) and R3 x S2
    Watterson, Michael
    Liu, Sikang
    Sun, Ke
    Smith, Trey
    Kumar, Vijay
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [3] Nonnegatively curved metrics on S2 x R2
    Gromoll, D
    Tapp, K
    [J]. GEOMETRIAE DEDICATA, 2003, 99 (01) : 127 - 136
  • [4] On the maximal number of real embeddings of minimally rigid graphs in R2, R3 and S2
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Legersky, Jan
    Tsigaridas, Elias
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2021, 102 : 189 - 208
  • [5] 3-branes on spaces with R X S2 X S3 topology -: art. no. 086006
    Zayas, LAP
    Tseytlin, AA
    [J]. PHYSICAL REVIEW D, 2001, 63 (08)
  • [6] Rationality of R2 and R3
    Dolgachev, Igor V.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (02) : 501 - 508
  • [7] HELICOIDS IN S2 x R AND H2 x R
    Kim, Young Wook
    Koh, Sung-Eun
    Shin, Heayong
    Yang, Seong-Deog
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 242 (02) : 281 - 297
  • [8] Regular homeomorphisms of R3 and of S3
    Ben Rejeb, Khadija
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (02) : 351 - 371
  • [9] LINK HOMOTOPY IN R3 AND S3
    KAISER, U
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1991, 151 (02) : 257 - 264
  • [10] Around polygons in R3 and S3
    Millson, JJ
    Poritz, JA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) : 315 - 331