3D dynamic modeling of powder forming processes via a simple and efficient node-to-surface contact algorithm

被引:19
|
作者
Khoei, A. R. [1 ]
Biabanaki, S. O. R. [1 ]
Parvaneh, S. M. [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Ctr Excellence Struct & Earthquake Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
Powder die-pressing; 3D contact friction; Node-to-surface algorithm; Dynamic FEM; Cap plasticity; Large deformation; DEFORMATION FRICTIONAL CONTACT; FINITE-ELEMENT SIMULATION; PRESSURE-SENSITIVE MATERIAL; METAL-POWDER; NUMERICAL-SIMULATION; COMPACTION PROCESSES; CONSTITUTIVE MODEL; PLASTICITY MODEL; CAP MODEL; DENSITY DISTRIBUTIONS;
D O I
10.1016/j.apm.2012.03.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a simple and efficient contact algorithm is presented for the evaluation of density distribution in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large finite element deformation in order to predict the non-uniform relative density distribution during the dynamic simulation of powder die-pressing. The accuracy and robustness of contact algorithm is verified by the impact analysis of two elastic rods, which is compared with the analytical solution. Finally, the performance of computational schemes is illustrated in dynamic modeling of a set of powder components. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:443 / 462
页数:20
相关论文
共 50 条
  • [1] Dynamic modeling of powder compaction processes via a simple contact algorithm
    Khoei, A. R.
    Biabanaki, S. O. R.
    Parvaneh, S. M.
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2012, 64 (01) : 196 - 210
  • [2] A new computational algorithm for 3D contact modeling of large plastic deformation in powder forming processes
    Khoei, A. R.
    Biabanaki, S. O. R.
    Vafa, A. R.
    Taheri-Mousavi, S. M.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (01) : 203 - 220
  • [3] 3D contact modelling of large plastic deformation in powder forming processes
    Amir R. Khoei
    S. O. R. Biabanaki
    S. M. Taheri-Mousavi
    A. R. Vafa
    S. M. Parvaneh
    [J]. International Journal of Material Forming, 2012, 5 : 163 - 173
  • [4] 3D contact modelling of large plastic deformation in powder forming processes
    Khoei, Amir R.
    Biabanaki, S. O. R.
    Taheri-Mousavi, S. M.
    Vafa, A. R.
    Parvaneh, S. M.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2012, 5 (02) : 163 - 173
  • [5] Computational modeling of 3D powder compaction processes
    Khoei, A. R.
    Azami, A. R.
    Azizi, S.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 185 (1-3) : 166 - 172
  • [6] 3D modeling and forming mechanism of Ti metallic powder via laser rapid prototyping
    Li, Hu
    Wang, Xiaobang
    Yu, Tianbiao
    Su, Pengcheng
    Wang, Wanshan
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2013, 53 (02): : 155 - 159
  • [7] Surface characterisation in forming processes by functional 3D parameters
    S. Weidel
    U. Engel
    [J]. The International Journal of Advanced Manufacturing Technology, 2007, 33 : 130 - 136
  • [8] Surface characterisation in forming processes by functional 3D parameters
    Weidel, S.
    Engel, U.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 33 (1-2): : 130 - 136
  • [9] Modeling recrystallization for 3D multi-pass forming processes
    Teodorescu, Mihaela
    Lasne, Patrice
    Loge, Roland
    [J]. RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 1201 - +
  • [10] 3D modeling strategies for simulating electromagnetic superposed forming processes
    Long, Anlin
    Wan, Min
    Wang, Wenping
    Wu, Xiangdong
    Cui, Xuexi
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 138 : 409 - 426