Toric degeneration of branching algebras

被引:9
|
作者
Howe, Roger [2 ]
Jackson, Steven [3 ]
Lee, Soo Teck [1 ]
Tan, Eng-Chye [1 ]
Willenbring, Jeb [4 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
[3] Univ Massachusetts, Dept Math, Boston, MA 02125 USA
[4] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
关键词
Classical symmetric pairs; Branching algebra; Toric deformation; Semigroup algebras; Lattice cones; SCHUBERT VARIETIES; HONEYCOMB MODEL; SAGBI BASES; GL(N);
D O I
10.1016/j.aim.2008.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each classical symmetric pair (G, H), there is a naturally defined multi-graded algebra U-(G,U-H), called the branching algebra for (G, H), which encodes the branching rule from G to H. This algebra has a natural family of subalgebras, depending on integer parameters. For a certain range of the parameters, the subalgebras have a particularly simple structure and are called stable branching algebras. In this paper, we show that the stable branching algebras for eight out of the ten families of classical symmetric pairs are flat deformations of the semigroup algebras of explicitly described lattice cones. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1809 / 1841
页数:33
相关论文
共 50 条
  • [1] Toric degeneration of algebras of invariants
    Kim, Sang jib
    Lee, Soo Teck
    ADVANCES IN MATHEMATICS, 2024, 459
  • [2] TORIC IDEALS FOR HIGH VERONESE SUBRINGS OF TORIC ALGEBRAS
    Shibuta, Takafumi
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 895 - 905
  • [3] On the Gauss algebra of toric algebras
    Herzog, Juergen
    Jafari, Raheleh
    Nejad, Abbas Nasrollah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 51 (01) : 1 - 17
  • [4] Derivation algebras of toric varieties
    Campillo, A
    Grabowski, J
    Müller, G
    COMPOSITIO MATHEMATICA, 1999, 116 (02) : 119 - 132
  • [5] Asymptotically saturated toric algebras
    Ambro, Florin
    TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (01) : 39 - 55
  • [6] On the Gauss algebra of toric algebras
    Jürgen Herzog
    Raheleh Jafari
    Abbas Nasrollah Nejad
    Journal of Algebraic Combinatorics, 2020, 51 : 1 - 17
  • [7] Hofer geometry via toric degeneration
    Kawamoto, Yusuke
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 721 - 762
  • [8] Semistable degeneration of toric varieties and their hypersurfaces
    Hu, Shengda
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2006, 14 (01) : 59 - 89
  • [9] Hall Lie algebras of toric monoid schemes
    Jun, Jaiung
    Szczesny, Matt
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (02):
  • [10] Hall Lie algebras of toric monoid schemes
    Jaiung Jun
    Matt Szczesny
    Selecta Mathematica, 2024, 30