Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2

被引:301
|
作者
McNeil, Ben I. [1 ]
Matear, Richard J. [2 ,3 ]
机构
[1] Univ New S Wales, Fac Sci, Climate Change Res Ctr, Sydney, NSW 2052, Australia
[2] Ctr Australian Weather & Climate Res, Hobart, Tas 7000, Australia
[3] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7000, Australia
基金
澳大利亚研究理事会;
关键词
carbon cycle; climate change;
D O I
10.1073/pnas.0806318105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Southern Ocean acidification via anthropogenic CO2 uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO32-) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO32- and pH. Our analysis shows an intense wintertime minimum in CO32- south of the Antarctic Polar Front and when combined with anthropogenic CO2 uptake is likely to induce aragonite undersaturation when atmospheric CO2 levels reach approximate to 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.
引用
收藏
页码:18860 / 18864
页数:5
相关论文
共 50 条
  • [1] Atmospheric CO2 stabilization and ocean acidification
    Cao, Long
    Caldeira, Ken
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)
  • [2] Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
    Han Zhang
    Long Cao
    Scientific Reports, 6
  • [3] History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification
    Zeebe, Richard E.
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 40, 2012, 40 : 141 - 165
  • [4] Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
    Zhang, Han
    Cao, Long
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Response of ocean acidification to a gradual increase and decrease of atmospheric CO2
    Cao, Long
    Zhang, Han
    Zheng, Meidi
    Wang, Shuangjing
    ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (02):
  • [6] Ocean Acidification: The Role of CO2
    Murphy, Jennifer L.
    Measures, Christopher I.
    OCEANOGRAPHY, 2014, 27 (01) : 238 - 246
  • [7] Improved atmospheric constraints on Southern Ocean CO2 exchange
    Jin, Yuming
    Keeling, Ralph F.
    Stephens, Britton B.
    Long, Matthew C.
    Patra, Prabir K.
    Roedenbeck, Christian
    Morgan, Eric J.
    Kort, Eric A.
    Sweeney, Colm
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (06)
  • [8] Atmospheric CO2 emissions and ocean acidification from bottom-trawling
    Atwood, Trisha B.
    Romanou, Anastasia
    Devries, Tim
    Lerner, Paul E.
    Mayorga, Juan S.
    Bradley, Darcy
    Cabral, Reniel B.
    Schmidt, Gavin A.
    Sala, Enric
    FRONTIERS IN MARINE SCIENCE, 2024, 10
  • [9] Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2
    Andrew J. Watson
    Geoffrey K. Vallis
    Maxim Nikurashin
    Nature Geoscience, 2015, 8 : 861 - 864
  • [10] Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2
    Watson, Andrew J.
    Vallis, Geoffrey K.
    Nikurashin, Maxim
    NATURE GEOSCIENCE, 2015, 8 (11) : 861 - +