Integral bases for the universal enveloping algebras of map algebras

被引:10
|
作者
Chamberlin, Samuel [1 ]
机构
[1] Park Univ, Dept Comp Sci Informat Syst & Math, Parkville, MO 64152 USA
关键词
Lie algebras; Integral forms; Integral bases; Map algebras; Straightening identity; FINITE-DIMENSIONAL REPRESENTATIONS; LOOP ALGEBRAS;
D O I
10.1016/j.jalgebra.2012.11.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite-dimensional, simple Lie algebra g over C and A, a commutative, associative algebra with unity over C, we exhibit an integral form for the universal enveloping algebra of the map algebra, U(g circle times A), and an explicit Z-basis for this integral form. We also produce explicit commutation formulas in the universal enveloping algebra of sl(2) circle times A that allow us to write certain elements in Poincare-Birkhoff-Witt order. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:232 / 249
页数:18
相关论文
共 50 条