Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

被引:204
|
作者
Ortega, A. M. [1 ,2 ]
Day, D. A. [1 ,3 ]
Cubison, M. J. [1 ,3 ]
Brune, W. H. [4 ]
Bon, D. [1 ,3 ,5 ]
de Gouw, J. A. [1 ,5 ]
Jimenez, J. L. [1 ,3 ]
机构
[1] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[4] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[5] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA
关键词
TRAP-MASS-SPECTROMETRY; HIGH-RESOLUTION; FINE PARTICULATE; EMISSIONS; CHAMBER; FIELD; EVOLUTION; AIRCRAFT; FIRE; SOA;
D O I
10.5194/acp-13-11551-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to similar to 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging in the atmosphere, and allowing for us to extend the investigation of smoke aging beyond the oxidation levels achieved in traditional smog chambers. Volatile organic compound (VOC) observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in total OA average of 1.42 +/- 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net-SOA-to-POA ratio of biomass-burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp similar to 3.9 x 10(11) molecules cm(-3) s), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass-burning smoke. Chemical transformations continued even after mass concentration stabilized. Changes in the biomass-burning tracer f(60) ranged from substantially decreasing to remaining constant with increased aging. With increased OHexp, oxidation was always detected (as indicated by f(44) and O/C). POA O/C ranged from 0.15 to 0.5, while aged OA O/C reached up to 0.87. The rate of oxidation and maximum O/C achieved differs for each biomass, and appears to increase with the initial O/C of the POA.
引用
收藏
页码:11551 / 11571
页数:21
相关论文
共 50 条
  • [1] Secondary organic aerosol formation from straw burning using an oxidation flow reactor
    Hui Wang
    Song Guo
    Zhijun Wu
    Kai Qiao
    Rongzhi Tang
    Ying Yu
    Weizhao Xu
    Wenfei Zhu
    Liwu Zeng
    Xiaofeng Huang
    Lingyan He
    Mattias Hallquist
    [J]. Journal of Environmental Sciences, 2022, 114 (04) : 249 - 258
  • [2] Secondary organic aerosol formation from straw burning using an oxidation flow reactor
    Wang, Hui
    Guo, Song
    Wu, Zhijun
    Qiao, Kai
    Tang, Rongzhi
    Yu, Ying
    Xu, Weizhao
    Zhu, Wenfei
    Zeng, Liwu
    Huang, Xiaofeng
    He, Lingyan
    Hallquist, Mattias
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2022, 114 : 249 - 258
  • [3] Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions
    Lim, Christopher Y.
    Hagan, David H.
    Coggon, Matthew M.
    Koss, Abigail R.
    Sekimoto, Kanako
    de Gouw, Joost
    Warneke, Carsten
    Cappa, Christopher D.
    Kroll, Jesse H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (19) : 12797 - 12809
  • [4] Direct observation of aqueous secondary organic aerosol from biomass-burning emissions
    Gilardoni, Stefania
    Massoli, Paola
    Paglione, Marco
    Giulianelli, Lara
    Carbone, Claudio
    Rinaldi, Matteo
    Decesari, Stefano
    Sandrini, Silvia
    Costabile, Francesca
    Gobbi, Gian Paolo
    Pietrogrande, Maria Chiara
    Visentin, Marco
    Scotto, Fabiana
    Fuzzi, Sandro
    Facchini, Maria Cristina
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (36) : 10013 - 10018
  • [5] Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions
    Li, Kun
    Zhang, Jun
    Bell, David M.
    Wang, Tiantian
    Lamkaddam, Houssni
    Cui, Tianqu
    Qi, Lu
    Surdu, Mihnea
    Wang, Dongyu
    Du, Lin
    El Haddad, Imad
    Slowik, Jay G.
    Prevot, Andre S. H.
    [J]. NATIONAL SCIENCE REVIEW, 2024, 11 (03)
  • [6] A laboratory study of secondary organic aerosol formation in an oxidation flow reactor
    Sasso, Fabio
    Picca, Francesca
    Pignatelli, Alessia
    Commodo, Mario
    Minutolo, Patrizia
    D'Anna, Andrea
    [J]. FUEL, 2024, 367
  • [7] Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions
    Kun Li
    Jun Zhang
    David MBell
    Tiantian Wang
    Houssni Lamkaddam
    Tianqu Cui
    Lu Qi
    Mihnea Surdu
    Dongyu Wang
    Lin Du
    Imad El Haddad
    Jay GSlowik
    Andre SHPrevot
    [J]. NationalScienceReview., 2024, 11 (03) - 158
  • [8] Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes
    Bian, Qijing
    Jathar, Shantanu H.
    Kodros, John K.
    Barsanti, Kelley C.
    Hatch, Lindsay E.
    May, Andrew A.
    Kreidenweis, Sonia M.
    Pierce, Jeffrey R.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (08) : 5459 - 5475
  • [9] Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions
    Akherati, Ali
    He, Yicong
    Coggon, Matthew M.
    Koss, Abigail R.
    Hodshire, Anna L.
    Sekimoto, Kanako
    Warneke, Carsten
    de Gouw, Joost
    Yee, Lindsay
    Seinfeld, John H.
    Onasch, Timothy B.
    Herndon, Scott C.
    Knighton, Walter B.
    Cappa, Christopher D.
    Kleeman, Michael J.
    Lim, Christopher Y.
    Kroll, Jesse H.
    Pierce, Jeffrey R.
    Jathar, Shantanu H.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (14) : 8568 - 8579
  • [10] Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols
    Yee, L. D.
    Kautzman, K. E.
    Loza, C. L.
    Schilling, K. A.
    Coggon, M. M.
    Chhabra, P. S.
    Chan, M. N.
    Chan, A. W. H.
    Hersey, S. P.
    Crounse, J. D.
    Wennberg, P. O.
    Flagan, R. C.
    Seinfeld, J. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (16) : 8019 - 8043