Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach

被引:857
|
作者
Schwartz, H. Andrew [1 ,2 ]
Eichstaedt, Johannes C. [1 ]
Kern, Margaret L. [1 ]
Dziurzynski, Lukasz [1 ]
Ramones, Stephanie M. [1 ]
Agrawal, Megha [1 ,2 ]
Shah, Achal [2 ]
Kosinski, Michal [3 ]
Stillwell, David [3 ]
Seligman, Martin E. P. [1 ]
Ungar, Lyle H. [2 ]
机构
[1] Univ Penn, Posit Psychol Ctr, Philadelphia, PA 19104 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Univ Cambridge, Psychometr Ctr, Cambridge, England
来源
PLOS ONE | 2013年 / 8卷 / 09期
关键词
WORDS; LIFE; REGRESSION; POSITIONS; TAXONOMY; MODEL; POWER; WEB;
D O I
10.1371/journal.pone.0073791
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyzed 700 million words, phrases, and topic instances collected from the Facebook messages of 75,000 volunteers, who also took standard personality tests, and found striking variations in language with personality, gender, and age. In our open-vocabulary technique, the data itself drives a comprehensive exploration of language that distinguishes people, finding connections that are not captured with traditional closed-vocabulary word-category analyses. Our analyses shed new light on psychosocial processes yielding results that are face valid (e.g., subjects living in high elevations talk about the mountains), tie in with other research (e.g., neurotic people disproportionately use the phrase 'sick of' and the word 'depressed'), suggest new hypotheses (e.g., an active life implies emotional stability), and give detailed insights (males use the possessive 'my' when mentioning their 'wife' or 'girlfriend' more often than females use 'my' with 'husband' or 'boyfriend'). To date, this represents the largest study, by an order of magnitude, of language and personality.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Latent human traits in the language of social media: An open-vocabulary approach
    Kulkarni, Vivek
    Kern, Margaret L.
    Stillwell, David
    Kosinski, Michel
    Matz, Sandra
    Ungar, Lyle
    Skiena, Steven
    Schwartz, H. Andrew
    [J]. PLOS ONE, 2018, 13 (11):
  • [2] A Hybrid Language Model for Open-Vocabulary Thai LVCSR
    Thangthai, Kwanchiva
    Chotimongkol, Ananlada
    Wutiwiwatchai, Chai
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2206 - 2210
  • [3] The Online Social Self An Open Vocabulary Approach to Personality
    Kern, Margaret L.
    Eichstaedt, Johannes C.
    Schwartz, H. Andrew
    Dziurzynski, Lukasz
    Ungar, Lyle H.
    Stillwell, David J.
    Kosinski, Michal
    Ramones, Stephanie M.
    Seligman, Martin E. P.
    [J]. ASSESSMENT, 2014, 21 (02) : 158 - 169
  • [4] LLMFormer: Large Language Model for Open-Vocabulary Semantic Segmentation
    Shi, Hengcan
    Dao, Son Duy
    Cai, Jianfei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [5] Gender differences in describing personality on social media: A natural language processing approach.
    Vukojevic, I
    Masnikosa, I
    Gjurkovic, M.
    Butkovic, A.
    Pocrnic, M.
    Bratko, D.
    Snajder, J.
    [J]. PERSONALITY AND INDIVIDUAL DIFFERENCES, 2024, 221
  • [6] Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling
    Kawakami, Kazuya
    Dyer, Chris
    Blunsom, Phil
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 1492 - 1502
  • [7] Can Identifier Splitting Improve Open-Vocabulary Language Model of Code
    Shi, Jieke
    Yang, Zhou
    He, Junda
    Xu, Bowen
    Lo, David
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2022), 2022, : 1134 - 1138
  • [8] Localized Vision-Language Matching for Open-vocabulary Object Detection
    Bravo, Maria A.
    Mittal, Sudhanshu
    Brox, Thomas
    [J]. PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 393 - 408
  • [9] Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
    Du, Yu
    Wei, Fangyun
    Zhang, Zihe
    Shi, Miaojing
    Gao, Yue
    Li, Guoqi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14064 - 14073
  • [10] Learning Open-vocabulary Semantic Segmentation Models From Natural Language Supervision
    Xu, Jilan
    Hou, Junlin
    Zhang, Yuejie
    Feng, Rui
    Wang, Yi
    Qiao, Yu
    Xie, Weidi
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2935 - 2944