On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrodinger equation

被引:6
|
作者
Antoine, X. [1 ]
Lorin, E. [2 ,3 ]
机构
[1] Univ Lorraine, UMR CNRS 7502, Inst Elie Cartan Lorraine, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Schrodinger equation; Domain decomposition method; Pseudo-differential operator calculus; ABSORBING BOUNDARY-CONDITIONS; DOMAIN DECOMPOSITION METHODS; LINEAR SCHRODINGER; NUMERICAL-SIMULATION; DIRICHLET-NEUMANN;
D O I
10.1016/j.cam.2018.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to the analysis of the rate of convergence of the classical and quasi-optimal Schwarz waveform relaxation (SWR) method for solving the linear Schrodinger equation with space-dependent potential. The strategy is based on i) the rewriting of the SWR algorithm as a fixed point algorithm in frequency space, and ii) the explicit construction of contraction factors thanks to pseudo-differential calculus. Some numerical experiments illustrating the analysis are also provided. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 50 条