Polynomial kernels for PROPER INTERVAL COMPLETION and related problems

被引:9
|
作者
Bessy, Stephane [1 ]
Perez, Anthony [2 ]
机构
[1] Univ Montpellier 2, CNRS, LIRMM, F-34095 Montpellier 5, France
[2] Univ Orleans, LIFO, F-45067 Orleans, France
关键词
Parameterized complexity; Kernelization algorithms; Graph modification problems; Proper interval graphs; ALGORITHMS; TRACTABILITY; RECOGNITION; GRAPHS;
D O I
10.1016/j.ic.2013.08.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G = (V, E) and a positive integer k, the PROPER INTERVAL COMPLETION problem asks whether there exists a set F of at most k pairs of (V x V) \ E such that the graph H = (V, E boolean OR F) is a proper interval graph. The PROPER INTERVAL COMPLETION problem finds applications in molecular biology and genomic research. This problem is known to be FPT (Kaplan, Tarjan and Shamir, FOCS'94), but no polynomial kernel was known to exist. We settle this question by proving that PROPER INTERVAL COMPLETION admits a kernel with (k(3)) vertices. Moreover, we prove that a related problem, the so-called BIPARTITE CHAIN DELETION problem, admits a kernel with O(k(2)) vertices, completing a previous result of Guo (ISAAC'07). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 108
页数:20
相关论文
共 50 条
  • [1] On Partitioning Interval Graphs into Proper Interval Subgraphs and Related Problems
    Gardi, Frederic
    JOURNAL OF GRAPH THEORY, 2011, 68 (01) : 38 - 54
  • [2] Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques
    Kaplan, H
    Shamir, R
    SIAM JOURNAL ON COMPUTING, 1996, 25 (03) : 540 - 561
  • [3] Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs
    AT and T Labs. Research, 180 Park Ave., Florham Park, NJ 07932, United States
    不详
    不详
    不详
    SIAM J Comput, 5 (1906-1922):
  • [4] Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs
    Kaplan, H
    Shamir, R
    Tarjan, RE
    SIAM JOURNAL ON COMPUTING, 1999, 28 (05) : 1906 - 1922
  • [5] On problems without polynomial kernels
    Bodlaender, Hans L.
    Downey, Rodney G.
    Fellows, Michael R.
    Hermelin, Danny
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2009, 75 (08) : 423 - 434
  • [6] Polynomial Kernels for Weighted Problems
    Etscheid, Michael
    Kratsch, Stefan
    Mnich, Matthias
    Roeglin, Heiko
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 287 - 298
  • [7] Polynomial kernels for weighted problems
    Etscheid, Michael
    Kratsch, Stefan
    Mnich, Matthias
    Roeglin, Heiko
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 84 : 1 - 10
  • [8] A Subexponential Parameterized Algorithm for Proper Interval Completion
    Bliznets, Ivan
    Fomin, Fedor V.
    Pilipczuk, Marcin
    Pilipczuk, Michal
    ALGORITHMS - ESA 2014, 2014, 8737 : 173 - 184
  • [9] A SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PROPER INTERVAL COMPLETION
    Bliznets, Ivan
    Fomin, Fedor V.
    Pilipczuk, Marcin
    Pilipczuk, Michal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 1961 - 1987
  • [10] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976