Parallel astronomical data processing with Python']Python: Recipes for multicore machines

被引:20
|
作者
Singh, Navtej [1 ]
Browne, Lisa-Marie [1 ]
Butler, Ray [1 ]
机构
[1] Natl Univ Ireland Galway, Sch Phys, Ctr Astron, Galway, Ireland
基金
美国国家科学基金会; 爱尔兰科学基金会; 美国国家航空航天局;
关键词
Astronomical data processing; Parallel computing; Multicore programming; !text type='Python']Python[!/text] multiprocessing; Parallel [!text type='Python']Python[!/text; Deconvolution; SIMULATIONS;
D O I
10.1016/j.ascom.2013.04.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
High performance computing has been used in various fields of astrophysical research. But most of it is implemented on massively parallel systems (supercomputers) or graphical processing unit clusters. With the advent of multicore processors in the last decade, many serial software codes have been re-implemented in parallel mode to utilize the full potential of these processors. In this paper, we propose parallel processing recipes for multicore machines for astronomical data processing. The target audience is astronomers who use Python as their preferred scripting language and who may be using PyRAF/IRAF for data processing. Three problems of varied complexity were benchmarked on three different types of multicore processors to demonstrate the benefits, in terms of execution time, of parallelizing data processing tasks. The native multiprocessing module available in Python makes it a relatively trivial task to implement the parallel code. We have also compared the three multiprocessing approaches-Pool/Map, Process/Queue and Parallel Python. Our test codes are freely available and can be downloaded from our website. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] prose: a python']python framework for modular astronomical images processing
    Garcia, Lionel J.
    Timmermans, Mathilde
    Pozuelos, Francisco J.
    Ducrot, Elsa
    Gillon, Michael
    Delrez, Laetitia
    Wells, Robert D.
    Jehin, Emmanuel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 509 (04) : 4817 - 4828
  • [2] Parallel Processing of Genetic Algorithms in Python']Python Language
    Skorpil, V
    Oujersky, V
    Cika, P.
    Tuleja, M.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3727 - 3731
  • [3] Tasrif: processing wearable data in Python']Python
    Al Homaid, Abdulaziz
    Hashim, Syed
    Abubaker, Fadhil
    Abbas, Ummar
    Farooq, Faisal
    Palotti, Joao
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [4] Enhancements to Ginga: a Python']Python Package for Building Astronomical Data Viewers
    Jeschke, Eric
    Inagaki, Takeshi
    Kackley, Russell
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS: XXIV, 2015, 495 : 169 - 172
  • [5] naplib-python']python: Neural acoustic data processing and analysis tools in python']python
    Mischler, Gavin
    Raghavan, Vinay
    Keshishian, Menoua
    Mesgarani, Nima
    [J]. SOFTWARE IMPACTS, 2023, 17
  • [6] A Python']Python framework for microphone array data processing
    Sarradj, Ennes
    Herold, Gert
    [J]. APPLIED ACOUSTICS, 2017, 116 : 50 - 58
  • [7] Towards Scalable Data Processing in Python']Python with CLIPPy
    Pirkelbauer, Peter
    Bromberger, Seth
    Iwabuchi, Keita
    Pearce, Roger
    [J]. PROCEEDINGS OF IA3 2021: 2021 IEEE/ACM 11TH WORKSHOP ON IRREGULAR APPLICATIONS: ARCHITECTURES AND ALGORITHMS, 2021, : 43 - 52
  • [8] PTRAIL - A python']python package for parallel trajectory data preprocessing
    Haidri, Salman
    Haranwala, Yaksh J.
    Bogorny, Vania
    Renso, Chiara
    da Fonseca, Vinicius Prado
    Soares, Amilcar
    [J]. SOFTWAREX, 2022, 19
  • [9] pPython']Python for Parallel Python']Python Programming
    Byun, Chansup
    Arcand, William
    Bestor, David
    Bergeron, Bill
    Gadepally, Vijay
    Houle, Michael
    Hubbell, Matthew
    Jananthan, Hayden
    Jones, Michael
    Keville, Kurt
    Klein, Anna
    Michaleas, Peter
    Milechin, Lauren
    Morales, Guillermo
    Mullen, Julie
    Prout, Andrew
    Reuther, Albert
    Rosa, Antonio
    Samsi, Siddharth
    Yee, Charles
    Kepner, Jeremy
    [J]. 2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [10] Parallel scripting with python']python
    Hinsen, Konrad
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (06) : 82 - 89