Basic calculus of signed permutations .1. Length and number of inversions

被引:5
|
作者
Foata, D [1 ]
Han, GN [1 ]
机构
[1] UNIV STRASBOURG 1,IRMA,F-67084 STRASBOURG,FRANCE
关键词
D O I
10.1006/aama.1997.0525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The traditional basic calculus on permutation statistic distributions is extended to the case of signed permutations. (C) 1997 Academic Press.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [1] Heuristics for the Sorting by Length-Weighted Inversions Problem on Signed Permutations
    Arruda, Thiago da Silva
    Dias, Ulisses
    Dias, Zanoni
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 59 - 70
  • [2] On the number of inversions in bimodal permutations
    Böhm, W
    Katzenbeisser, W
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) : 55 - 63
  • [3] Sorting Signed Permutations by Inversions in O(nlogn) Time
    Swenson, Krister M.
    Rajan, Vaibhav
    Lin, Yu
    Moret, Bernard M. E.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2010, 17 (03) : 489 - 501
  • [4] Sorting Signed Permutations by Inversions in O(n log n) Time
    Swenson, Krister M.
    Rajan, Vaibhav
    Lin, Yu
    Moret, Bernard M. E.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2009, 5541 : 386 - +
  • [5] A CAT algorithm for generating permutations with a fixed number of inversions
    Effler, S
    Ruskey, F
    INFORMATION PROCESSING LETTERS, 2003, 86 (02) : 107 - 112
  • [6] Sorting signed permutations by fixed-length reversals
    Qi, Xingqin
    Li, Guojun
    Wu, Jichang
    Liu, Bingqiang
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (04) : 933 - 948
  • [7] On the average number of reversals needed to sort signed permutations
    de Lima, Thaynara Arielly
    Ayala-Rincon, Mauricio
    DISCRETE APPLIED MATHEMATICS, 2018, 235 : 59 - 80
  • [8] Minimum Number of Monotone Subsequences of Length 4 in Permutations
    Balogh, Jozsef
    Hu, Ping
    Lidicky, Bernard
    Pikhurko, Oleg
    Udvari, Balazs
    Volec, Jan
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04): : 658 - 679
  • [9] PROBLEM WITH PERMUTATIONS .1.
    PARKER, ET
    DYER, GA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 26 (02) : 201 - 201
  • [10] On the distribution of the number of cycles of a given length in the class of permutations with known number of cycles
    Timashov, A.N.
    Discrete Mathematics and Applications, 2001, 11 (05): : 471 - 483