KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

被引:8
|
作者
Bai, Yang [1 ,2 ]
Tang, Ping [2 ]
Hu, Changmiao [2 ]
机构
[1] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, 20 Datun Rd, Beijing, Peoples R China
来源
XXIII ISPRS CONGRESS, COMMISSION I | 2016年 / 3卷 / 01期
关键词
Relative radiometric normalization; multivariate alteration detection (MAD); canonical correlation analysis (CCA); kernel version of canonical correlation analysis (KCCA);
D O I
10.5194/isprsannals-III-1-49-2016
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [1] An adaptive algorithm of relative radiometric normalization based on feature corner
    Deng Xiaolian
    Wang Changyao
    Wei Mingguo
    SECOND INTERNATIONAL CONFERENCE ON SPACE INFORMATION TECHNOLOGY, PTS 1-3, 2007, 6795
  • [2] Relative Radiometric Normalization of Multitemporal images
    Broncano Mateos, Carlos Javier
    Pinilla Ruiz, Carlos
    Gonzalez Crespo, Ruben
    Castillo Sanz, Andres
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2010, 1 (03): : 54 - 59
  • [3] Comparison of relative radiometric normalization techniques
    Desert Research Inst., Biological Sciences Centre, 755 E. Flamingo Road, Las Vegas NV 89119, United States
    ISPRS J Photogramm Remote Sensing, 3 (117-126):
  • [4] Comparison of relative radiometric normalization techniques
    Yuan, D
    Elvidge, CD
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1996, 51 (03) : 117 - 126
  • [5] Automatic relative radiometric normalization algorithm based on pseudo-invariant neighborhood
    Deng Xiaolian
    Wang Changyao
    Lei Bangjun
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 550 - +
  • [6] Random Sampling-Based Relative Radiometric Normalization
    Bonnet, Wessel
    Celik, Turgay
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Soil line transformation based relative radiometric normalization
    Jaishanker, R.
    Thomaskutty, A. V.
    Senthivel, T.
    Sridhar, V. N.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (22) : 5103 - 5108
  • [8] EFFECTS OF UNBALANCED DATA ON RADIOMETRIC TRANSFORMING MODEL FITTING FOR RELATIVE RADIOMETRIC NORMALIZATION
    Gan, Wenxia
    Geng, Jing
    Wang, Yu
    Xu, Jinying
    Yu, Weihang
    Yuan, Huanning
    Qin, Rongjun
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2316 - 2319
  • [9] Relative radiometric normalization for mosaicking IRS CartoSat-2 panchromatic images using genetic algorithm
    Kumar, Gaurav
    Kumar, Akshay
    Gupta, Rajiv
    GEOCARTO INTERNATIONAL, 2022, 37 (26) : 11614 - 11632
  • [10] Study of Relative Radiometric Normalization Based on Multitemporal ASTER Images
    Xing Yu
    Jiang Qigang
    Qiao Zhuping
    Li Wenqing
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 190 - +