A remark on the Alexandrov-Fenchel inequality

被引:13
|
作者
Wang, Xu [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Alexandrov-Fenchel inequality; Brascamp-Lieb proof; Khovanskii-Teissier inequality; T-Hodge theory; BRUNN-MINKOWSKI; EQUATION;
D O I
10.1016/j.jfa.2018.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give a complex-geometric proof of the Alexandrov-Fenchel inequality without using toric compactifications. The idea is to use the Legendre transform and develop the Brascamp-Lieb proof of the Prelcopa theorem. New ingredients in our proof include an integration of Timorin's mixed Hodge-Riemann bilinear relation and a mixed norm version of Harmander's L-2-estimate, which also implies a non-compact version of the Khovanskii-Teissier inequality. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2061 / 2088
页数:28
相关论文
共 50 条
  • [1] RIGIDITY AND THE ALEXANDROV-FENCHEL INEQUALITY
    FILLIMAN, P
    MONATSHEFTE FUR MATHEMATIK, 1992, 113 (01): : 1 - 22
  • [2] A Form of Alexandrov-Fenchel Inequality
    Guan, Pengfei
    Ma, Xi-Nan
    Trudinger, Neil
    Zhu, Xiaohua
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (04) : 999 - 1012
  • [3] One more proof of the Alexandrov-Fenchel inequality
    Cordero-Erausquin, Dario
    Klartag, Bo'az
    Merigot, Quentin
    Santambrogio, Filippo
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (08) : 676 - 680
  • [4] The extremals of the Alexandrov-Fenchel inequality for convex polytopes
    Shenfeld, Yair
    van Handel, Ramon
    ACTA MATHEMATICA, 2023, 231 (01) : 89 - 204
  • [5] Equality Cases of the Alexandrov-Fenchel Inequality Are Not in the Polynomial Hierarchy
    Chan, Swee Hong
    Pak, Igor
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 875 - 883
  • [6] Equality cases of the Alexandrov-Fenchel inequality are not in the polynomial hierarchy
    Chan, Swee Hong
    Pak, Igor
    FORUM OF MATHEMATICS PI, 2024, 12
  • [7] On a relative Alexandrov-Fenchel inequality for convex bodies in Euclidean spaces
    Ferrari, Fausto
    Franchi, Bruno
    Lu, Guozhen
    FORUM MATHEMATICUM, 2006, 18 (06) : 907 - 921
  • [8] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    Xia, Chao
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1207 - 1237
  • [9] ALEXANDROV-FENCHEL INEQUALITY FOR CONVEX HYPERSURFACES WITH CAPILLARY BOUNDARY IN A BALL
    Weng, Liangjun
    Xia, Chao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (12) : 8851 - 8883
  • [10] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Yuxin Ge
    Guofang Wang
    Jie Wu
    Chao Xia
    Frontiers of Mathematics in China, 2016, 11 : 1207 - 1237