Unsupervised Deep Shape from Template

被引:0
|
作者
Orumi, Mohammad Ali Bagheri [1 ]
Sepanj, M. Hadi [1 ]
Famouri, Mahmoud [1 ]
Azimifar, Zohreh [1 ]
Wong, Alexander [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
关键词
Deep learning; Depth estimation; Shape from Template; 3D RECONSTRUCTION;
D O I
10.1007/978-3-030-27202-9_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents Unsupervised Deep Shape from Template (UDSfT), a novel method that leverages deep neural networks (DNNs) for reconstructing the 3D surface of an object using a single image. More specifically, the reconstruction of isometric deformable objects is achieved in the proposed UDSfT method via a DNN-based template-based framework. Unlike previous approaches that leverage supervised learning, the proposed UDSfT method leverages the notion of unsupervised learning to overcome this obstacle and provide real-time 3D reconstruction. More specifically, UDSfT achieves this via an unsupervised structure that leverages a combination of real-data and synthetic data. Experimental results show that the proposed UDSfT method outperforms the state-of-the-art Shape from Template methods in object 3D reconstruction.
引用
收藏
页码:440 / 451
页数:12
相关论文
共 50 条
  • [1] Texture-Generic Deep Shape-From-Template
    Fuentes-Jimenez, David
    Pizarro, Daniel
    Casillas-Perez, David
    Collins, Toby
    Bartoli, Adrien
    IEEE ACCESS, 2021, 9 : 75211 - 75230
  • [2] Weakly-Supervised Deep Shape-From-Template
    Luengo-Sanchez, Sara
    Fuentes-Jimenez, David
    Losada-Gutierrez, Cristina
    Pizarro, Daniel
    Bartoli, Adrien
    IEEE ACCESS, 2025, 13 : 22868 - 22892
  • [3] Unsupervised Deep Multi-shape Matching
    Cao, Dongliang
    Bernard, Florian
    COMPUTER VISION - ECCV 2022, PT III, 2022, 13663 : 55 - 71
  • [4] Unsupervised Deep Learning for Structured Shape Matching
    Roufosse, Jean-Michel
    Sharma, Abhishek
    Ovsjanikov, Maks
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1617 - 1627
  • [5] Shape-from-Template
    Bartoli, Adrien
    Gerard, Yan
    Chadebecq, Francois
    Collins, Toby
    Pizarro, Daniel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (10) : 2099 - 2118
  • [6] Unsupervised Dense Deformation Embedding Network for Template-Free Shape Correspondence
    Chen, Ronghan
    Cong, Yang
    Dong, Jiahua
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8341 - 8350
  • [7] A higher performance shape from focus strategy based on unsupervised deep learning for 3D shape reconstruction
    Dogan, Hulya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 35825 - 35848
  • [8] A higher performance shape from focus strategy based on unsupervised deep learning for 3D shape reconstruction
    Hulya Dogan
    Multimedia Tools and Applications, 2024, 83 : 35825 - 35848
  • [9] Equiareal Shape-from-Template
    Casillas-Perez, David
    Pizarro, Daniel
    Fuentes-Jimenez, David
    Mazo, Manuel
    Bartoli, Adrien
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (05) : 607 - 626
  • [10] Equiareal Shape-from-Template
    David Casillas-Perez
    Daniel Pizarro
    David Fuentes-Jimenez
    Manuel Mazo
    Adrien Bartoli
    Journal of Mathematical Imaging and Vision, 2019, 61 : 607 - 626