A multiple polynomial general number field sieve

被引:0
|
作者
ElkenbrachtHuizing, M
机构
来源
ALGORITHMIC NUMBER THEORY | 1996年 / 1122卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We assume that the reader is familiar with the General Number Field Sieve (GNFS). This article describes a way to use more than two polynomials. Two, three and four polynomials are compared both for classical and for a special form of lattice sieving (line sieving). We present theoretical expectations and experimental results. With our present polynomial search algorithm, using more than two polynomials speeds up classical sieving considerably but not line sieving. Line sieving for two polynomials is the fastest way of sieving we tried so far.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [1] On polynomial selection for the general number field sieve
    Kleinjung, Thorsten
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 2037 - 2047
  • [2] On General Number Field Sieve and Its Polynomial Selection
    Gang, Zhou
    COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 250 - 256
  • [3] On the coefficients of the polynomial in the number field sieve
    YANG Min
    MENG QingShu
    WANG ZhangYi
    LI Li
    ZHANG HuanGuo
    Science China(Information Sciences), 2015, 58 (11) : 182 - 190
  • [4] On the coefficients of the polynomial in the number field sieve
    Yang Min
    Meng QingShu
    Wang ZhangYi
    Li Li
    Zhang HuanGuo
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (11) : 1 - 9
  • [5] A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm
    Sarkar, Palash
    Singh, Shashank
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT I, 2016, 10031 : 37 - 62
  • [6] A General Polynomial Sieve
    Shuhong Gao
    Jason Howell
    Designs, Codes and Cryptography, 1999, 18 : 149 - 157
  • [7] A general polynomial sieve
    Gao, SH
    Howell, J
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 18 (1-3) : 149 - 157
  • [8] Non-linear polynomial selection for the number field sieve
    Prest, Thomas
    Zimmermann, Paul
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (04) : 401 - 409
  • [9] Montgomery's method of polynomial selection for the number field sieve
    Coxon, Nicholas
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 : 72 - 102
  • [10] Computing discrete logarithms with the general number field sieve
    Weber, D
    ALGORITHMIC NUMBER THEORY, 1996, 1122 : 391 - 403