Three-Dimensional Interlocking Interface: Mechanical Nanofastener for High Interfacial Robustness of Polymer Electrolyte Membrane Fuel Cells

被引:42
|
作者
Yuk, Seongmin [1 ]
Choo, Min-Ju [1 ]
Lee, Dongyoung [2 ]
Guim, Hwanuk [3 ]
Kim, Tae-Ho [4 ]
Lee, Dai Gil [2 ]
Choi, Sungyu [1 ]
Lee, Dong-Hyun [1 ]
Doo, Gisu [1 ]
Hong, Young Taik [4 ]
Kim, Hee-Tak [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Mech Aerosp & Syst Engn, Daejeon 305701, South Korea
[3] Korea Basic Sci Inst, Div Electron Microscop Res, Daejeon 305333, South Korea
[4] Korea Res Inst Chem Technol, Ctr Membrane, Daejeon 305600, South Korea
基金
新加坡国家研究基金会;
关键词
PROTON-EXCHANGE MEMBRANE; POLY(ETHER ETHER KETONE); GAS-DIFFUSION ELECTRODES; CATALYST LAYER; IONIC-CONDUCTIVITY; COPOLYMERS; IONOMER; ASSEMBLIES; PEMFCS; BINDER;
D O I
10.1002/adma.201603056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A scalable nanofastener featuring a 3D interlocked interfacial structure between the hydrocarbon membrane and perfluorinated sulfonic acid based catalyst layer is presented to overcome the interfacial issue of hydrocarbon membrane based polymer electrolyte membrane fuel cells. The nanofastener-introduced membrane electrode assembly (MEA) withstands more than 3000 humidity cycles, which is 20 times higher durability than that of MEA without nanofastener.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Interlocking Membrane/Catalyst Layer Interface for High Mechanical Robustness of Hydrocarbon-Membrane-Based Polymer Electrolyte Membrane Fuel Cells
    Oh, Keun-Hwan
    Kang, Hong Suk
    Choo, Min-Ju
    Jang, Duk-Hun
    Lee, Dongyoung
    Lee, Dai Gil
    Kim, Tae-Ho
    Hong, Young Taik
    Park, Jung-Ki
    Kim, Hee-Tak
    ADVANCED MATERIALS, 2015, 27 (19) : 2974 - 2980
  • [2] External reinforcement of hydrocarbon membranes by a three-dimensional interlocking interface for mechanically durable polymer electrolyte membrane fuel cells
    Yuk, Seongmin
    Yuk, Jinok
    Kim, Tae-Ho
    Hong, Young Taik
    Lee, Dong-Hyun
    Hyun, Jonghyun
    Choi, Sungyu
    Doo, Gisu
    Lee, Dong Wook
    Kim, Hee-Tak
    JOURNAL OF POWER SOURCES, 2019, 415 : 44 - 49
  • [3] Three-dimensional numerical simulation of polymer electrolyte membrane fuel cells
    Lin, Hong
    Tao, Wenquan
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (01): : 41 - 45
  • [4] Three-dimensional simulation of polymer electrolyte membrane fuel cells with experimental validation
    Fink, Clemens
    Fouquet, Nicolas
    ELECTROCHIMICA ACTA, 2011, 56 (28) : 10820 - 10831
  • [5] Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6876 - 6891
  • [6] Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures
    Caglayan, Dilara Gulcin
    Sezgin, Berna
    Devrim, Yilser
    Eroglu, Inci
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (23) : 10060 - 10070
  • [7] Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell
    Zielke, L.
    Vierrath, S.
    Moroni, R.
    Mondon, A.
    Zengerle, R.
    Thiele, S.
    RSC ADVANCES, 2016, 6 (84): : 80700 - 80705
  • [8] Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells
    Um, S
    Wang, CY
    JOURNAL OF POWER SOURCES, 2004, 125 (01) : 40 - 51
  • [9] Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells
    Dhanasekaran, P.
    Lokesh, K.
    Ojha, P. K.
    Sahu, A. K.
    Bhat, S. D.
    Kalpana, D.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 572 : 198 - 206
  • [10] An experimental investigation of three-dimensional mechanical characteristics of gas diffusion layers in proton electrolyte membrane fuel cells
    Yanqin Chen
    Chao Jiang
    Chongdu Cho
    Journal of Solid State Electrochemistry, 2019, 23 : 2021 - 2030