EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FRACTIONAL SEMILINEAR MIXED VOLTERRA-FREDHOLM INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS

被引:0
|
作者
Matar, Mohammed M. [1 ]
机构
[1] Al Azhar Univ, Dept Math, Gaza, Israel
关键词
Fractional integrodifferential equations; mild solution; nonlocal condition; Banach fixed point;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the fractional semilinear mixed Volterra-Fredholm integrodifferential equation d(alpha)x(t)/dt(alpha) = Ax(t) + f (t, x(t), integral(t)(0) k(t, s, x(s)) ds, integral(T)(t0) h(t, s, x(s)) ds), where t is an element of [t(0), T], t(0) >= 0, 0 < alpha < 1, and f is a given function. We prove the existence and uniqueness of solutions to this equation, with a nonlocal condition.
引用
收藏
页数:7
相关论文
共 50 条