Classification of gene expression data using PCA-based fault detection and identification

被引:0
|
作者
Josserand, Timothy M. [1 ]
机构
[1] Univ Texas Austin, Appl Res Labs, Genom Signal Proc Grp, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a simple and robust method for the classification of significantly expressed genes in high-throughput microarray measurements of a cell's transcriptome. The technique has its origins in PCA-based fault detection and isolation (FDI) systems engineering. PCA-FDI is a data-driven procedure that can be used to isolate gene expression profiles associated with anomalous cell function by projecting target assays onto a 'residual' subspace orthogonal to a set of PCA coordinates extracted from microarray data collected under normative cell conditions. The method is robust to noise and disturbances, and is insensitive to natural variation due to nominal cell functioning. The approach is demonstrated on a sequence of simulated gene regulatory network (GRN) time-series expression profiles.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 50 条
  • [1] PCA-based method of soft fault detection and identification for the ongoing commissioning of chillers
    Cotrufo, Nunzio
    Zmeureanu, Radu
    [J]. ENERGY AND BUILDINGS, 2016, 130 : 443 - 452
  • [2] PCA-based gene selection for cancer classification
    Kavitha, K. R.
    Ram, Aiswarya V.
    Anandu, S.
    Karthik, S.
    Kailas, Sreeja
    Arjun, N. M.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 1 - 4
  • [3] Fault detection using multiscale PCA-based moving window GLRT
    Sheriff, M. Ziyan
    Mansouri, Majdi
    Karim, M. Nazmul
    Nounou, Hazem
    Nounou, Mohamed
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 54 : 47 - 64
  • [4] Statistical fault detection using PCA-based GLR hypothesis testing
    Harrou, Fouzi
    Nounou, Mohamed N.
    Nounou, Hazem N.
    Madakyaru, Muddu
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2013, 26 (01) : 129 - 139
  • [5] Statistics Analysis of PCA-based Sensor Fault Detection
    Qiu, Tian
    Zhu, Xiang
    [J]. FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 1085 - 1089
  • [6] Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection
    Wang, Yifei
    Ma, Xiandong
    Qian, Peng
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (04) : 1627 - 1635
  • [7] Enhanced Monitoring using PCA-based GLR Fault Detection and Multiscale Filtering
    Harrou, Fouzi
    Nounou, Mohamed N.
    Nounou, Hazem N.
    [J]. PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CONTROL AND AUTOMATION (CICA), 2013, : 1 - 8
  • [8] Sensitivity analysis for PCA-based chiller sensor fault detection
    Hu, Yunpeng
    Li, Guannan
    Chen, Huanxin
    Li, Haorong
    Liu, Jiangyan
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2016, 63 : 133 - 143
  • [9] Application of PCA-based fault detection in power plant process
    Niu, Z
    Nju, YG
    Huang, XB
    Liu, JZ
    [J]. PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 4, PTS A and B, 2004, 4 : 837 - 842
  • [10] Fault Detection and Identification Using Modified Bayesian Classification on PCA Subspace
    Liu, Jialin
    Chen, Ding-Sou
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) : 3059 - 3077