The Schur-Horn theorem for operators with three point spectrum

被引:16
|
作者
Jasper, John [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Diagonals of self-adjoint operators; Schur-Horn theorem; Pythagorean theorem; Carpenter's theorem; PYTHAGOREAN THEOREM; DIAGONALS; FRAMES; NORMS;
D O I
10.1016/j.jfa.2013.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the set of diagonals of the unitary orbit of a self-adjoint operator with three points in the spectrum. Our result gives a Schur-Horn theorem for operators with three point spectrum analogous to Kadison's Pythagorean theorem and carpenter's theorem, which characterize the diagonals of orthogonal projections. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1494 / 1521
页数:28
相关论文
共 50 条
  • [1] THE SCHUR-HORN THEOREM FOR OPERATORS WITH FINITE SPECTRUM
    Bhat, B. V. Rajarama
    Ravichandran, Mohan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3441 - 3453
  • [2] THE SCHUR-HORN THEOREM FOR OPERATORS WITH FINITE SPECTRUM
    Bownik, Marcin
    Jasper, John
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 5099 - 5140
  • [3] The Schur-Horn theorem for unbounded operators with discrete spectrum
    Bownik, Marcin
    Jasper, John
    Siudeja, Bartlomiej
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (01) : 148 - 164
  • [4] A Schur-Horn theorem for symplectic eigenvalues
    Bhatia, Rajendra
    Jain, Tanvi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 599 : 133 - 139
  • [5] The schur-horn theorem for operators and frames with prescribed norms and frame operator
    Antezana, J.
    Massey, P.
    Ruiz, M.
    Stojanoff, D.
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) : 537 - 560
  • [6] A Schur-Horn theorem in III factors
    Argerami, M.
    Massey, P.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (05) : 2051 - 2059
  • [7] The Schur-Horn problem for normal operators
    Kennedy, M.
    Skoufranis, P.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 354 - 380
  • [8] A new version of Schur-Horn type theorem
    Huang, Shaowu
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (01): : 41 - 46
  • [9] Majorization and a Schur-Horn theorem for positive compact operators, the nonzero kernel case
    Loreaux, Jireh
    Weiss, Gary
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (03) : 703 - 731
  • [10] A generalized Schur-Horn theorem and optimal frame completions
    Fickus, Matthew
    Marks, Justin D.
    Poteet, Miriam J.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (03) : 505 - 528