High-accuracy finite-difference beam-propagation method for cylindrical geometry

被引:2
|
作者
Zang, WP
Tian, JG [1 ]
Liu, ZB
Zhou, WY
Song, F
Zhang, CP
机构
[1] Nankai Univ, MOE Key Lab Adv Tech & Fsabricat Weak Light Nonli, Tianjin 300457, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Poton Mat & Technol Informat Sci, Tianjin 300457, Peoples R China
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2006年 / 82卷 / 01期
关键词
D O I
10.1007/s00340-005-2049-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A high-accuracy finite-difference beam-propagation method (HAFD- BPM) based on high-accuracy divided-difference formulas is presented. The truncation error in this HAFD- BPM is reduced to o (Delta r)(4)in the transverse direction, whereas the error in a conventional FD-BPM is typically o (Delta r)(2). Gaussian beam propagation in vacuum and nonlinear medium is simulated by this new method and conventional one. The comparison between them in computing time and accuracy reveals the advantage of this new method. As an example, this method is applied to the simulation of blow-up in self-focusing of a Gaussian beam.
引用
下载
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [1] High-accuracy finite-difference beam-propagation method for cylindrical geometry
    W.-P. Zang
    J.-G. Tian
    Z.-B. Liu
    W.-Y. Zhou
    F. Song
    C.-P. Zhang
    Applied Physics B, 2006, 82 : 99 - 104
  • [2] NOVEL GENERALIZED FINITE-DIFFERENCE BEAM-PROPAGATION METHOD
    SCHULZ, D
    GLINGENER, C
    VOGES, E
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (04) : 1132 - 1140
  • [3] FINITE-DIFFERENCE BEAM-PROPAGATION METHOD FOR CIRCULARLY SYMMETRICAL FIELDS
    YAMAUCHI, J
    IKEGAYA, M
    ANDO, T
    NAKANO, H
    IEICE TRANSACTIONS ON ELECTRONICS, 1992, E75C (09) : 1093 - 1095
  • [4] SLOW-WAVE FINITE-DIFFERENCE BEAM-PROPAGATION METHOD
    LIU, PL
    ZHAO, Q
    CHOA, FS
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (08) : 890 - 892
  • [5] MODIFIED FINITE-DIFFERENCE BEAM-PROPAGATION METHOD BASED ON THE DOUGLAS SCHEME
    SUN, LZ
    YIP, GL
    OPTICS LETTERS, 1993, 18 (15) : 1229 - 1231
  • [6] Finite-difference beam-propagation method for anisotropic waveguides with torsional birefringence
    Ma, Xiuquan
    Zhu, Shicheng
    Li, Li
    Li, Jinyan
    Shao, Xinyu
    Galvanauskas, Almants
    OPTICS EXPRESS, 2018, 26 (04): : 3995 - 4003
  • [7] MODAL FIELDS CALCULATION USING THE FINITE-DIFFERENCE BEAM-PROPAGATION METHOD
    WIJNANDS, F
    HOEKSTRA, HJWM
    KRIJNEN, GJM
    DERIDDER, RM
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994, 12 (12) : 2066 - 2072
  • [8] ANALYSIS OF AN INTERSECTIONAL OPTICAL SWITCH BY THE FINITE-DIFFERENCE BEAM-PROPAGATION METHOD
    KINOSHITA, H
    KAMBAYASHI, T
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1995, 78 (03): : 80 - 88
  • [9] FINITE-DIFFERENCE BEAM-PROPAGATION METHOD USING THE OBLIQUE COORDINATE SYSTEM
    YAMAUCHI, J
    SHIBAYAMA, J
    NAKANO, H
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1995, 78 (06): : 20 - 27
  • [10] Application of the finite-difference beam-propagation method to optical waveguide analysis
    Shibayama, J
    Yamauchi, J
    Nakano, H
    ICECOM 2003, CONFERENCE PROCEEDINGS, 2003, : 262 - 265