Gravitoelectromagnetic Perturbations of Kerr-Newman Black Holes: Stability and Isospectrality in the Slow-Rotation Limit

被引:68
|
作者
Pani, Paolo [1 ,2 ]
Berti, Emanuele [3 ,4 ]
Gualtieri, Leonardo [5 ,6 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, CENTRA, P-1049 Lisbon, Portugal
[2] Harvard Smithsonian CfA, Inst Theory & Computat, Cambridge, MA 02138 USA
[3] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
[4] CALTECH, Pasadena, CA 91109 USA
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[6] Sez INFN Roma1, I-00185 Rome, Italy
基金
美国国家科学基金会;
关键词
QUASI-NORMAL MODES; NONRADIAL OSCILLATIONS; DIRAC-EQUATION; WAVE-EQUATIONS; STARS;
D O I
10.1103/PhysRevLett.110.241103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) less than or similar to 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Scalar, electromagnetic, and gravitational perturbations of Kerr-Newman black holes in the slow-rotation limit
    Pani, Paolo
    Berti, Emanuele
    Gualtieri, Leonardo
    [J]. PHYSICAL REVIEW D, 2013, 88 (06):
  • [2] On Perturbations of Extreme Kerr-Newman Black Holes and their Evolution
    Reiris, Martin
    [J]. ANNALES HENRI POINCARE, 2015, 16 (07): : 1551 - 1581
  • [3] Testing the nonlinear stability of Kerr-Newman black holes
    Zilhao, Miguel
    Cardoso, Vitor
    Herdeiro, Carlos
    Lehner, Luis
    Sperhake, Ulrich
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [4] Scalarized Kerr-Newman black holes
    Guo, Guangzhou
    Wang, Peng
    Wu, Houwen
    Yang, Haitang
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
  • [5] Scalarized Kerr-Newman black holes
    Guangzhou Guo
    Peng Wang
    Houwen Wu
    Haitang Yang
    [J]. Journal of High Energy Physics, 2023
  • [6] Strings in Kerr-Newman black holes
    Kuiroukidis, A
    Papadopoulos, DB
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (04) : 593 - 606
  • [7] UNIQUENESS OF KERR-NEWMAN BLACK HOLES
    WALD, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (04) : 490 - +
  • [8] Uniqueness of extremal Kerr and Kerr-Newman black holes
    Amsel, Aaron J.
    Horowitz, Gary T.
    Marolf, Donald
    Roberts, Matthew M.
    [J]. PHYSICAL REVIEW D, 2010, 81 (02):
  • [9] Quasinormal modes of Kerr-Newman black holes: Coupling of electromagnetic and gravitational perturbations
    Berti, E
    Kokkotas, KD
    [J]. PHYSICAL REVIEW D, 2005, 71 (12) : 1 - 11
  • [10] Microcanonical algorithm of Kerr-Newman black holes
    Fujisaki, H
    Sano, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (02): : 181 - 188