Cerebral Microbleed Detection by Wavelet Entropy and Naive Bayes Classifier

被引:0
|
作者
Wang, Hai-nan [1 ,2 ,3 ]
Gagnon, Beatrice [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Comp Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] State Key Lab Digital Publishing Technol, Beijing 100871, Peoples R China
[3] Univ Toronto, Div Engn Sci, Toronto, ON M5S2E4, Canada
关键词
Wavelet entropy; Cerebral microbleed; Naive Bayesian classifier; PATHOLOGICAL BRAIN DETECTION; SUPPORT VECTOR MACHINE; IMAGE CLASSIFICATION; TSALLIS ENTROPY; DETECTION SYSTEM; NEURAL-NETWORK; HYBRIDIZATION; TRANSFORM; ALGORITHM; MOMENT;
D O I
暂无
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
(Aim) Current cerebral microbleed detection methods are too complicated, and difficult to train. (Method) We enrolled 10 subjects diagnosed as cerebral microbleed. Our method combined wavelet entropy and naive Bayes classifier. (Results) The simulation results over 10 times of 10-fold cross validation showed that the average sensitivity, average specificity, and average accuracy of our method are 76.90 +/- 1.81%, 76.91 +/- 1.58%, and 76.90 +/- 1.67%, respectively. Our method can identify the CMB areas using only 1.41 seconds. (Conclusion) Our method is effective and rapid.
引用
下载
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [1] Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier
    Zhou, Xingxing
    Wang, Shuihua
    Xu, Wei
    Ji, Genlin
    Phillips, Preetha
    Sun, Ping
    Zhang, Yudong
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2015), PT I, 2015, 9043 : 201 - 209
  • [2] Naive Bayes Classifier based watermark detection in wavelet transform
    Elbasi, Ersin
    Eskicioglu, Ahmet M.
    MULTIMEDIA CONTENT REPRESENTATION, CLASSIFICATION AND SECURITY, 2006, 4105 : 232 - 240
  • [3] Improving the performance of Naive Bayes classifier for spam detection
    Yang, Zhen
    Guo, Jun
    Xu, Weiran
    Chen, Bo
    Hu, Jiani
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 694 - 698
  • [4] Anomalous Gait Detection using Naive Bayes Classifier
    Manap, Hany Hazfiza
    Tahir, Nooritawati Md
    Abdullah, R.
    2012 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ISIEA 2012), 2012,
  • [5] Fake News Detection Using Naive Bayes Classifier
    Granik, Mykhailo
    Mesyura, Volodymyr
    2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 900 - 903
  • [6] HoG Based Naive Bayes Classifier for Glaucoma Detection
    Nirmala, K.
    Venkateswaran, N.
    Kumar, Vinoth C.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2331 - 2336
  • [7] Twitter Spam Detection Using Naive Bayes Classifier
    Santoshi, K. Ushasree
    Bhavya, S. Sree
    Sri, Y. Bhavya
    Venkateswarlu, B.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 773 - 777
  • [8] Naive Bayes text classifier
    Zhang, Haiyi
    Li, Di
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 708 - 711
  • [9] A comparative study of Naive Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
    Muralidharan, V.
    Sugumaran, V.
    APPLIED SOFT COMPUTING, 2012, 12 (08) : 2023 - 2029
  • [10] Intrusion Detection using Naive Bayes Classifier with Feature Reduction
    Mukherjee, Saurabh
    Sharma, Neelam
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 119 - 128