Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below

被引:34
|
作者
Gigli, Nicola [1 ]
Mondino, Andrea [2 ]
Rajala, Tapio [3 ]
机构
[1] Univ Nice, Math, F-06108 Nice, France
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
GEOMETRY; INEQUALITIES; MANIFOLDS; CONES;
D O I
10.1515/crelle-2013-0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that in any infinitesimally Hilbertian CD*(K, N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to a Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD*(0, N)-spaces.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条