Sparse multipartite graphs as partition universal for graphs with bounded degree

被引:4
|
作者
Lin, Qizhong [1 ]
Li, Yusheng [2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Fujian, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
Partition universal; Sparse regularity lemma; Probabilistic method; CONTAIN;
D O I
10.1007/s10878-017-0214-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For graphs G and H, let signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote . For any and n, we say that G is partition universal for if for every . Let be the random spanning subgraph of the complete r-partite graph with N vertices in each part, in which each edge of appears with probability p independently and randomly. We prove that for fixed there exist constants r, B and C depending only on such that if and , then asymptotically almost surely is partition universal for H(Delta, n).
引用
收藏
页码:724 / 739
页数:16
相关论文
共 50 条
  • [1] Sparse multipartite graphs as partition universal for graphs with bounded degree
    Qizhong Lin
    Yusheng Li
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 724 - 739
  • [2] Sparse partition universal graphs for graphs of bounded degree
    Kohayakawa, Yoshiharu
    Roedl, Vojtech
    Schacht, Mathias
    Szemeredi, Endre
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5041 - 5065
  • [3] Sparse universal graphs for bounded-degree graphs
    Alon, Noga
    Capalbo, Michael
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 123 - 133
  • [4] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Kohayakawa, Y
    Rödl, V
    Sissokho, P
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 93 - 137
  • [5] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Y. Kohayakawa
    V. Rödl
    P. Sissokho
    [J]. Israel Journal of Mathematics, 2004, 139 : 93 - 137
  • [6] Partition into Triangles on Bounded Degree Graphs
    van Rooij, Johan M. M.
    Niekerk, Marcel E. van Kooten
    Bodlaender, Hans L.
    [J]. SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2011, 6543 : 558 - 569
  • [7] Partition Into Triangles on Bounded Degree Graphs
    Johan M. M. van Rooij
    Marcel E. van Kooten Niekerk
    Hans L. Bodlaender
    [J]. Theory of Computing Systems, 2013, 52 : 687 - 718
  • [8] Partition Into Triangles on Bounded Degree Graphs
    van Rooij, Johan M. M.
    Niekerk, Marcel E. van Kooten
    Bodlaender, Hans L.
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 52 (04) : 687 - 718
  • [9] Induced-Universal Graphs for Graphs with Bounded Maximum Degree
    Steve Butler
    [J]. Graphs and Combinatorics, 2009, 25 : 461 - 468
  • [10] Small universal graphs for bounded-degree planar graphs
    Capalbo, M
    [J]. COMBINATORICA, 2002, 22 (03) : 345 - 359