A linear time algorithm for computing a minimum paired-dominating set of a convex bipartite graph

被引:8
|
作者
Panda, B. S. [1 ]
Pradhan, D. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Comp Sci & Applicat Grp, New Delhi 110016, India
关键词
Paired-domination; Perfect matching; Convex bipartite graphs; INTERVAL;
D O I
10.1016/j.dam.2012.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D of vertices of a graph G = (V, E) is a dominating set of G if every vertex in V\D has at least one neighbor in D.A dominating set D of G is a paired-dominating set of G if the induced subgraph, G[D], has a perfect matching. The paired-domination problem is for a given graph G and a positive integer k to answer if G has a paired-dominating set of size at most k. The paired-domination problem is known to be NP-complete even for bipartite graphs. In this paper, we propose a linear time algorithm to compute a minimum paired-dominating set of a convex bipartite graph. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1776 / 1783
页数:8
相关论文
共 50 条
  • [1] Minimum paired-dominating set in chordal bipartite graphs and perfect elimination bipartite graphs
    Panda, B. S.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (04) : 770 - 785
  • [2] Computing a minimum paired-dominating set in strongly orderable graphs
    Pradhan, D.
    Panda, B. S.
    DISCRETE APPLIED MATHEMATICS, 2019, 253 : 37 - 50
  • [3] Minimum paired-dominating set in chordal bipartite graphs and perfect elimination bipartite graphs
    B. S. Panda
    D. Pradhan
    Journal of Combinatorial Optimization, 2013, 26 : 770 - 785
  • [4] Graphs with unique minimum paired-dominating set
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    ARS COMBINATORIA, 2015, 119 : 177 - 192
  • [5] Vertices Contained in all or in no Minimum Paired-Dominating Set of a Tree
    Michael A. Henning
    Michael D. Plummer
    Journal of Combinatorial Optimization, 2005, 10 : 283 - 294
  • [6] Vertices contained in all or in no minimum paired-dominating set of a tree
    Henning, MA
    Plummer, MD
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2005, 10 (03) : 283 - 294
  • [7] Trees with unique minimum paired-dominating sets
    Chellali, M
    Jaynes, TW
    ARS COMBINATORIA, 2004, 73 : 3 - 12
  • [8] A linear-time algorithm for minimum k-hop dominating set of a cactus graph
    Abu-Affash, A. Karim
    Carmi, Paz
    Krasin, Adi
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 488 - 499
  • [9] Vertices in all minimum paired-dominating sets of block graphs
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 176 - 191
  • [10] An O(n plus m) time algorithm for computing a minimum semitotal dominating set in an interval graph
    Pradhan, D.
    Pal, Saikat
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 733 - 747