Social Learning and Bayesian Games in Multiagent Signal Processing

被引:55
|
作者
Krishnamurthy, Vikram [1 ]
Poor, H. Vincent [2 ]
机构
[1] Univ British Columbia, Dept Elect Engn, Vancouver, BC, Canada
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SENSOR NETWORKS; GLOBAL GAMES; EQUILIBRIUM; ALGORITHMS;
D O I
10.1109/MSP.2012.2232356
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
How do local agents and global decision makers interact in statistical signal processing problems where autonomous decisions need to be made? When individual agents possess limited sensing, computation, and communication capabilities, can a network of agents achieve sophisticated global behavior? Social learning and Bayesian games are natural settings for addressing these questions. This article presents an overview, novel insights, and a discussion of social learning and Bayesian games in adaptive sensing problems when agents communicate over a network. Two highly stylized examples that demonstrate to the reader the ubiquitous nature of the models, algorithms, and analysis in statistical signal processing are discussed in tutorial fashion. © 1991-2012 IEEE.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [1] Networked Signal and Information Processing: Learning by multiagent systems
    Vlaski, Stefan
    Kar, Soummya
    Sayed, Ali H.
    Moura, Jose M. F.
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (05) : 92 - 105
  • [2] Multiagent Learning in Large Anonymous Games
    Kash, Ian A.
    Friedman, Eric J.
    Halpern, Joseph Y.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 40 : 571 - 598
  • [3] GAMES OF STOCHASTIC LEARNING AUTOMATA AND ADAPTIVE SIGNAL-PROCESSING
    TANG, CKK
    MARS, P
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 851 - 856
  • [4] Modeling opponent learning in multiagent repeated games
    Hu, Yudong
    Han, Congying
    Li, Haoran
    Guo, Tiande
    APPLIED INTELLIGENCE, 2023, 53 (13) : 17194 - 17210
  • [5] PyTAG: Tabletop Games for Multiagent Reinforcement Learning
    Balla, Martin
    Long, George E. M.
    Goodman, James
    Gaina, Raluca D.
    Perez-Liebana, Diego
    IEEE TRANSACTIONS ON GAMES, 2024, 16 (04) : 993 - 1002
  • [6] Modeling opponent learning in multiagent repeated games
    Yudong Hu
    Congying Han
    Haoran Li
    Tiande Guo
    Applied Intelligence, 2023, 53 : 17194 - 17210
  • [7] A Bayesian Multiagent Trust Model for Social Networks
    Sardana, Noel
    Cohen, Robin
    Zhang, Jie
    Chen, Shuo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2018, 5 (04): : 995 - 1008
  • [8] Multiagent Graphical Games With Inverse Reinforcement Learning
    Donge, Vrushabh S.
    Lian, Bosen
    Lewis, Frank L.
    Davoudi, Ali
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 841 - 852
  • [9] Learning to play Bayesian games
    Dekel, E
    Fudenberg, D
    Levine, DK
    GAMES AND ECONOMIC BEHAVIOR, 2004, 46 (02) : 282 - 303
  • [10] BAYESIAN LEARNING IN REPEATED GAMES
    JORDAN, JS
    GAMES AND ECONOMIC BEHAVIOR, 1995, 9 (01) : 8 - 20