Predicting Solar Irradiance in Singapore

被引:0
|
作者
Fathima, T. A. [1 ]
Nedumpozhimana, Vasudevan [2 ]
Lee, Yee Hui [3 ]
Winkler, Stefan [4 ]
Dev, Soumyabrata [2 ,5 ,6 ]
机构
[1] Indian Inst Technol, Mumbai, Maharashtra, India
[2] ADAPT SFI Res Ctr, Dublin, Ireland
[3] Nanyang Technol Univ Singapore, Singapore 639798, Singapore
[4] Natl Univ Singapore, Dept Comp Sci, Singapore 117417, Singapore
[5] Univ Coll Dublin, Sch Comp Sci, Dublin, Ireland
[6] Beijing Dublin Int Coll, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solar irradiance is the primary input for all solar energy generation systems. The amount of available solar radiation over time under the local weather conditions helps to decide the optimal location, technology and size of a solar energy project. We study the behaviour of incident solar irradiance on the earth's surface using weather sensors. In this paper, we propose a time-series based technique to forecast the solar irradiance values for shorter lead times of upto 15 minutes. Our experiments are conducted in the tropical region viz. Singapore, which receives a large amount of solar irradiance throughout the year. We benchmark our method with two common forecasting techniques, namely persistence model and average model, and we obtain good prediction performance. We report a root mean square of 147W/m(2) for a lead time of 15 minutes.
引用
收藏
页码:3164 / 3167
页数:4
相关论文
共 50 条
  • [1] A new approach for predicting vertical global solar irradiance
    Li, DHW
    Lam, JC
    Lau, CCS
    [J]. RENEWABLE ENERGY, 2002, 25 (04) : 591 - 606
  • [2] Predicting Solar Irradiance Using Machine Learning Techniques
    Javed, Abeera
    Kasi, Bakhtiar Khan
    Khan, Faisal Ahmad
    [J]. 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1458 - 1462
  • [3] Predicting Hourly Solar Irradiance Using Machine Learning Methods
    Obiora, Chibuzor N.
    Ali, Ahmed
    Hassan, Ali N.
    [J]. 2020 11TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2020,
  • [4] Use of Shadowband Correction Models for Predicting Direct Solar Irradiance
    Kotti, M. C.
    Argiriou, A. A.
    Kazantzidis, A.
    [J]. RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), 2013, 1531 : 107 - 110
  • [5] Predicting Solar Irradiance Using Time Series Neural Networks
    Alzahrani, A.
    Kimball, J. W.
    Dagli, C.
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2014, 36 : 623 - 628
  • [6] Solar spectral irradiance and total solar irradiance at a solar minimum
    E. E. Benevolenskaya
    S. N. Shapovalov
    I. G. Kostuchenko
    [J]. Geomagnetism and Aeronomy, 2014, 54 : 926 - 932
  • [7] Solar Spectral Irradiance and Total Solar Irradiance at a Solar Minimum
    Benevolenskaya, E. E.
    Shapovalov, S. N.
    Kostuchenko, I. G.
    [J]. GEOMAGNETISM AND AERONOMY, 2014, 54 (07) : 926 - 932
  • [8] Mathematical model for predicting the performance of photovoltaic system with delayed solar irradiance
    Sabudin, Siti Nurashiken Md
    Jamil, Norazaliza Mohd
    [J]. KUWAIT JOURNAL OF SCIENCE, 2024, 51 (02)
  • [9] Predicting solar irradiance on inclined surfaces using sky radiance data
    Li, DHW
    Lam, JC
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (11-12) : 1771 - 1783
  • [10] Implementing Extreme Gradient Boosting (XGBoost) Algorithm in Predicting Solar Irradiance
    Obiora, Chibuzor N.
    Ali, Ahmed
    Hasan, Ali N.
    [J]. 2021 IEEE PES/IAS POWERAFRICA CONFERENCE, 2021, : 575 - 579