A posteriori error estimates of hp-discontinuous Galerkin method for strongly nonlinear elliptic problems

被引:6
|
作者
Bi, Chunjia [1 ]
Wang, Cheng [2 ]
Lin, Yanping [3 ]
机构
[1] Yantai Univ, Dept Math, Yantai, Shandong, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
hp-discontinuous Galerkin method; Strongly nonlinear elliptic problems; A posteriori error estimates; Residual estimator; FINITE-ELEMENT METHODS; BOUNDARY-VALUE-PROBLEMS; PARTIAL-DIFFERENTIAL-EQUATIONS; CONVECTION-DIFFUSION PROBLEMS; NONMONOTONE TYPE; APPROXIMATION; PRIORI; DISCRETIZATIONS; CONVERGENCE; VERSION;
D O I
10.1016/j.cma.2015.08.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the residual-based a posteriori error estimates of hp-discontinuous Galerkin finite element methods for strongly nonlinear elliptic boundary value problems. Computable upper and lower bounds on the error are derived in a natural mesh-dependent energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. Numerical experiments are also provided to illustrate the performance of the proposed estimators. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 166
页数:27
相关论文
共 50 条
  • [1] hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    [J]. Numerische Mathematik, 2008, 109 : 233 - 268
  • [2] hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (02) : 233 - 268
  • [3] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATES FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE BIHARMONIC PROBLEM
    Dong, Zhaonan
    Mascotto, Lorenzo
    Sutton, Oliver J.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1273 - 1298
  • [4] Functional A Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
    Lazarov, Raytcho
    Repin, Sergey
    Tomar, Satyendra K.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 952 - 971
  • [5] Error estimates for a discontinuous galerkin method for elliptic problems
    Lee M.A.
    Shin J.Y.
    [J]. Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 189 - 201
  • [6] MULTIGRID ALGORITHMS FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Sarti, Marco
    Verani, Marco
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 598 - 618
  • [7] A Posteriori Error Estimates of Discontinuous Galerkin Method for Nonmonotone Quasi-linear Elliptic Problems
    Chunjia Bi
    Victor Ginting
    [J]. Journal of Scientific Computing, 2013, 55 : 659 - 687
  • [8] A Posteriori Error Estimates of Discontinuous Galerkin Method for Nonmonotone Quasi-linear Elliptic Problems
    Bi, Chunjia
    Ginting, Victor
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 659 - 687
  • [9] A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Wihler, Thomas P.
    [J]. NUMERISCHE MATHEMATIK, 2021, 148 (02) : 363 - 386
  • [10] Pointwise Error Estimates and Two-Grid Algorithms of Discontinuous Galerkin Method for Strongly Nonlinear Elliptic Problems
    Bi, Chunjia
    Wang, Cheng
    Lin, Yanping
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (01) : 153 - 175