Automatic Parameter Configuration for an Elite Solution Hyper-Heuristic Applied to the Multidimensional Knapsack Problem

被引:0
|
作者
Urra, Enrique [1 ]
Cabrera-Paniagua, Daniel [2 ]
Cubillos, Claudio [1 ]
Lefranc, Gaston [3 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Escuela Ingn Informat, Av Brasil 2950, Valparaiso, Chile
[2] Univ Valparaiso, Escuela Ingn Comercial, Pasaje La Paz 1301, Vina Del Mar, Chile
[3] Pontificia Univ Catolica Valparaiso, Escuela Ingn Elect, Av Brasil 2950, Valparaiso, Chile
关键词
hyper-heuristics; automated algorithm configuration; multidimensional knapsack problem; sequential model-based algorithm configuration;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyper-heuristics are methods for problem solving that decouple the search mechanisms from the domain features, providing a reusable approach across different problems. Even when they make a difference regarding metaheuristics under this perspective, proposals in literature commonly expose parameters for controlling their behavior such as metaheuristics does. Several internal mechanisms for automatically adapt those parameters can be implemented, but they require extra design effort and their validation no necessarily is generalizable to multiple domains. Such effort is prohibitive for their practical application on decision-support systems. Rather than implementing internal adapting mechanisms, the exploration of automatic parameter configuration through external tools is performed in this work. A new hyper-heuristic implementation based on a elite set of solutions was implemented and automatically configured with SMAC (Sequential Model-Based Algorithm Configuration), a state-of-art tool for automatic parameter configuration. Experiments with and without automated configuration are performed over the Multidimensional Knapsack Problem (MKP). Comparative results demonstrate the effectiveness of the tool for improving the algorithm performance. Additionally, results provided in-sights that configurations applied over subsets of instances could provide better improvements in the algorithm performance.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 50 条
  • [1] A genetic programming hyper-heuristic for the multidimensional knapsack problem
    Drake, John H.
    Hyde, Matthew
    Ibrahim, Khaled
    Ozcan, Ender
    [J]. KYBERNETES, 2014, 43 (9-10) : 1500 - 1511
  • [2] A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem
    Drake, John H.
    Ozcan, Ender
    Burke, Edmund K.
    [J]. EVOLUTIONARY COMPUTATION, 2016, 24 (01) : 113 - 141
  • [3] A Fuzzy Hyper-Heuristic Approach for the 0-1 Knapsack Problem
    Olivas, Frumen
    Amaya, Ivan
    Carlos Ortiz-Bayliss, Jose
    Conant-Pablos, Santiago E.
    Terashima-Marin, Hugo
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [4] A Feature-Independent Hyper-Heuristic Approach for Solving the Knapsack Problem
    Sanchez-Diaz, Xavier
    Carlos Ortiz-Bayliss, Jose
    Amaya, Ivan
    Cruz-Duarte, Jorge M.
    Enrique Conant-Pablos, Santiago
    Terashima-Marin, Hugo
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [5] A Quartile-Based Hyper-heuristic for Solving the 0/1 Knapsack Problem
    Gomez-Herrera, Fernando
    Ramirez-Valenzuela, Rodolfo A.
    Ortiz-Bayliss, Jose Carlos
    Amaya, Ivan
    Terashima-Marin, Hugo
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2017, PT I, 2018, 10632 : 118 - 128
  • [6] Solution of the family traveling salesman problem using a hyper-heuristic approach
    Pandiri, Venkatesh
    Singh, Alok
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [7] Cartesian Genetic Programming Hyper-Heuristic with Parameter Configuration for Production Lot-Sizing
    Pessoa, Luis Filipe de Araujo
    Hellingrath, Bernd
    Neto, Fernando Buarque de Lima
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [8] A Hyper-Heuristic for the Orienteering Problem With Hotel Selection
    Toledo, Alan
    Riff, Maria-Cristina
    Neveu, Bertrand
    [J]. IEEE ACCESS, 2020, 8 : 1303 - 1313
  • [9] Connecting Automatic Parameter Tuning, Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming
    Woodward, John R.
    Johnson, Colin G.
    Brownlee, Alexander E. I.
    [J]. PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1357 - 1358
  • [10] Binary Particle Swarm Optimization Based Hyper-Heuristic for Solving the Set-Union Knapsack Problem
    CHEN Xiang
    LUO Jinyan
    LIN Geng
    [J]. Wuhan University Journal of Natural Sciences, 2021, 26 (04) : 305 - 314