An equivalence between log-sum-exp approximation and entropy regularization in K-means clustering

被引:1
|
作者
Inoue, Kohei [1 ]
Hara, Kenji [1 ]
机构
[1] Kyushu Univ, Fac Design, Minami Ku, 4-9-1 Shiobaru, Fukuoka 8158540, Japan
来源
关键词
K-means clustering; log-sum-exp approximation; entropy regularization; maximum entropy method;
D O I
10.1587/nolta.11.446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show an equivalence between log-sum-exp approximation and entropy regularization in K-means clustering, which is a well-known algorithm for partitional clustering. We derive an identical equation for updating centroids of clusters from the two formulations. Additionally, we derive an alternative equation suitable for another formulation of entropy regularization, maximum entropy method. We also show experimental results which support the theoretical results.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [1] A Universal Approximation Result for Difference of Log-Sum-Exp Neural Networks
    Calafiore, Giuseppe C.
    Gaubert, Stephane
    Possieri, Corrado
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5603 - 5612
  • [2] An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
    Xiong, Liyan
    Wang, Cheng
    Huang, Xiaohui
    Zeng, Hui
    [J]. ENTROPY, 2019, 21 (07)
  • [3] Entropy Weighted Power k-Means Clustering
    Chakraborty, Saptarshi
    Paul, Debolina
    Das, Swagatam
    Xu, Jason
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 691 - 700
  • [4] Rough Entropy Based k-Means Clustering
    Malyszko, Dariusz
    Stepaniuk, Jaroslaw
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 406 - 413
  • [5] Entropy Based Soft K-means Clustering
    Bai, Xue
    Luo, Siwei
    Zhao, Yibiao
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 107 - 110
  • [6] Minimum entropy, k-means, spectral clustering
    Lee, Y
    Choi, S
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 117 - 122
  • [7] K-means clustering using entropy minimization
    Okafor, A
    Pardalos, PM
    [J]. THEORY AND ALGORITHMS FOR COOPERATIVE SYSTEMS, 2004, 4 : 339 - 351
  • [8] K-means clustering algorithm using the entropy
    Palubinskas, G
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV, 1998, 3500 : 63 - 71
  • [9] Efficient model-free Q-factor approximation in value space via log-sum-exp neural networks
    Calafiore, Giuseppe C.
    Possieri, Corrado
    [J]. 2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 23 - 28
  • [10] An Effective Optimization Method for Fuzzy k-Means With Entropy Regularization
    Liang, Yun
    Chen, Yijin
    Huang, Qiong
    Chen, Haoming
    Nie, Feiping
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 2846 - 2861