Empirical likelihood inference for semi-parametric estimating equations

被引:3
|
作者
Wang ShanShan [1 ]
Cui HengJian [2 ]
Li RunZe [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Dept Stat & Financial Math, Beijing 100875, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Dept Stat, Beijing 100048, Peoples R China
[3] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
confidence region; coverage probability; empirical likelihood ratio; semi-parametric estimating equation; Wilk's theorem; CONFIDENCE-INTERVALS; REGRESSION-ANALYSIS; LINEAR-MODELS; IMPUTATION; FUNCTIONALS; PARAMETERS;
D O I
10.1007/s11425-012-4494-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in the corresponding estimating equations E (F) G(X, h(T), beta) = 0. In this paper, the empirical likelihood inference of combining information about unknown parameters and distribution function through the semi-parametric estimating equations are developed, and the corresponding Wilk's Theorem is established. The simulations of several useful models are conducted to compare the finite-sample performance of the proposed method and that of the normal approximation based method. An illustrated real example is also presented.
引用
下载
收藏
页码:1247 / 1262
页数:16
相关论文
共 50 条
  • [1] Empirical likelihood inference for semi-parametric estimating equations
    WANG ShanShan
    CUI HengJian
    LI RunZe
    Science China Mathematics, 2013, 56 (06) : 1243 - 1258
  • [2] Empirical likelihood inference for semi-parametric estimating equations
    ShanShan Wang
    HengJian Cui
    RunZe Li
    Science China Mathematics, 2013, 56 : 1247 - 1262
  • [3] Semi-parametric modelling and likelihood estimation with estimating equations
    Lu, JC
    Chen, D
    Gan, NC
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2002, 44 (02) : 193 - 212
  • [4] A semi-parametric empirical likelihood approach for conditional estimating equations under endogenous selection
    Berger, Yves G.
    Patilea, Valentin
    ECONOMETRICS AND STATISTICS, 2022, 24 : 151 - 163
  • [5] Empirical likelihood in a semi-parametric model
    Qin, J
    Wong, A
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (02) : 209 - 219
  • [6] Empirical likelihood inference for semi-parametric transformation models with length-biased sampling
    Yu, Xue
    Zhao, Yichuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 132 : 115 - 125
  • [7] Semi-parametric hybrid empirical likelihood inference for two-sample comparison with censored data
    Haiyan Su
    Mai Zhou
    Hua Liang
    Lifetime Data Analysis, 2011, 17 : 533 - 551
  • [8] Semi-parametric hybrid empirical likelihood inference for two-sample comparison with censored data
    Su, Haiyan
    Zhou, Mai
    Liang, Hua
    LIFETIME DATA ANALYSIS, 2011, 17 (04) : 533 - 551
  • [9] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Xiuli Wang
    Gaorong Li
    Lu Lin
    Metrika, 2011, 73 : 171 - 185
  • [10] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Wang, Xiuli
    Li, Gaorong
    Lin, Lu
    METRIKA, 2011, 73 (02) : 171 - 185