Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score

被引:58
|
作者
Hachiya, Tsuyoshi [1 ,2 ]
Kamatani, Yoichiro [8 ]
Takahashi, Atsushi [8 ,10 ]
Hata, Jun [11 ,12 ,13 ]
Furukawa, Ryohei [1 ]
Shiwa, Yuh [1 ,2 ]
Yamaji, Taiki [14 ]
Hara, Megumi [15 ]
Tanno, Kozo [3 ]
Ohmomo, Hideki [1 ]
Ono, Kanako [1 ]
Takashima, Naoyuki [16 ]
Matsuda, Koichi [17 ]
Wakai, Kenji [18 ]
Sawada, Norie [14 ]
Iwasaki, Motoki [14 ]
Yamagishi, Kazumasa [20 ]
Ago, Tetsuro [12 ]
Ninomiya, Toshiharu [13 ]
Fukushima, Akimune [4 ]
Hozawa, Atsushi [21 ]
Minegishi, Naoko [22 ]
Satoh, Mamoru [1 ,2 ,5 ]
Endo, Ryujin [6 ]
Sasaki, Makoto [7 ]
Sakata, Kiyomi [3 ]
Kobayashi, Seiichiro [7 ]
Ogasawara, Kuniaki [7 ]
Nakamura, Motoyuki [7 ]
Hitomi, Jiro [7 ]
Kita, Yoshikuni [16 ,24 ]
Tanaka, Keitaro [15 ]
Iso, Hiroyasu [25 ]
Kitazono, Takanari [12 ,13 ]
Kubo, Michiaki [9 ]
Tanaka, Hideo [19 ,26 ]
Tsugane, Shoichiro [14 ]
Kiyohara, Yutaka [27 ]
Yamamoto, Masayuki [23 ]
Sobue, Kenji [7 ]
Shimizu, Atsushi [1 ]
机构
[1] Iwate Med Univ, Div Biomed Informat Anal, Shiwa, Iwate, Japan
[2] Iwate Med Univ, Div Biobank & Data Management, Shiwa, Iwate, Japan
[3] Iwate Med Univ, Div Clin Res & Epidemiol, Shiwa, Iwate, Japan
[4] Iwate Med Univ, Div Innovat & Educ, Shiwa, Iwate, Japan
[5] Iwate Med Univ, Div Community Med Supports & Hlth Record Informat, Shiwa, Iwate, Japan
[6] Iwate Med Univ, Div Publ Relat & Planning, Shiwa, Iwate, Japan
[7] Iwate Med Univ, Iwate Tohoku Med Megabank Org, 2-1-1 Nishitokuta, Shiwa, Iwate 0283694, Japan
[8] RIKEN, Lab Stat Anal, Kanagawa, Japan
[9] RIKEN, Ctr Integrat Med Sci, Kanagawa, Japan
[10] Natl Cerebral & Cardiovasc Ctr, Omics Res Ctr, Lab Omics Informat, Osaka, Japan
[11] Kyushu Univ, Dept Environm Med, Grad Sch Med Sci, Fukuoka, Japan
[12] Kyushu Univ, Dept Med & Clin Sci, Grad Sch Med Sci, Fukuoka, Japan
[13] Kyushu Univ, Ctr Cohort Studies, Grad Sch Med Sci, Fukuoka, Japan
[14] Natl Canc Ctr, Ctr Publ Hlth Sci, Epidemiol & Prevent Grp, Tokyo, Japan
[15] Saga Univ, Fac Med, Dept Prevent Med, Saga, Japan
[16] Shiga Univ Med Sci, Dept Publ Hlth, Shiga, Japan
[17] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Mol Med Lab, Tokyo, Japan
[18] Nagoya Univ, Grad Sch Med, Dept Prevent Med, Nagoya, Aichi, Japan
[19] Nagoya Univ, Grad Sch Med, Dept Epidemiol, Nagoya, Aichi, Japan
[20] Univ Tsukuba, Fac Med, Dept Publ Hlth Med, Tsukuba, Ibaraki, Japan
[21] Tohoku Univ, Tohoku Med Megabank Org, Dept Prevent Med & Epidemiol, Sendai, Miyagi, Japan
[22] Tohoku Univ, Tohoku Med Megabank Org, Dept Biobank, Sendai, Miyagi, Japan
[23] Tohoku Univ, Tohoku Med Megabank Org, Dept Integrat Genom, Sendai, Miyagi, Japan
[24] Tsuruga Nursing Univ, Fac Nursing Sci, Fukui, Japan
[25] Osaka Univ, Dept Social Med, Grad Sch Med, Publ Hlth, Osaka, Japan
[26] Aichi Canc Ctr, Res Inst, Div Epidemiol & Prevent, Nagoya, Aichi, Japan
[27] Hisayama Res Inst Lifestyle Dis, Fukuoka, Japan
基金
日本学术振兴会;
关键词
genome-wide association study; genotype; risk assessment; stroke; GENOME-WIDE ASSOCIATION; JAPANESE POPULATION; CARDIOVASCULAR-DISEASE; SYSTEMATIC ANALYSIS; BLOOD-PRESSURE; HEART-DISEASE; GLOBAL BURDEN; 21; REGIONS; HISAYAMA; SUBTYPES;
D O I
10.1161/STROKEAHA.116.014506
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. Methods We genotyped 13214 Japanese individuals with IS and 26470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). Results In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33-2.31) and 1.99 (95% confidence interval, 1.19-3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). Conclusions The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条
  • [1] Polygenic Risk Score for PR Interval is Associated with Increased Risk of Ischemic Stroke
    Xu, Huichun
    Cole, John W.
    Gaynor, Brady
    Ryan, Kathy
    Mitchell, Braxton D.
    Rundek, Tatjana
    Worrall, Bradford B.
    Ellinor, Patrick T.
    Fatkin, Diane
    Lubitz, Steven A.
    Pare, Gui
    Leifer, Dana
    CIRCULATION, 2021, 144
  • [2] Application of the genetic risk model for the analysis of predisposition to nonlacunar ischemic stroke
    Korchagin, Vitaly
    Mironov, Konstantin
    Platonov, Alexander
    Dribnokhodova, Olga
    Akselrod, Elina
    Dunaeva, Elena
    Stolyar, Marina
    Gorbenko, Aleksey
    Gritsan, Galina
    Olkhovskiy, Igor
    Rakova, Natalia
    Roytman, Alexander
    Sotnikov, Alexander
    Raskurazhev, Anton
    Maksimova, Marina
    Tanashyan, Marine
    Illarioshkin, Sergey
    Shipulin, German
    PERSONALIZED MEDICINE, 2019, 16 (05) : 369 - 378
  • [3] Polygenic risk factors related to neurodegenration in Alzheimer disease: calculation of a genetic predisposition score (gps)
    Fernandez-Novoa, L.
    Llovo, R.
    Tudoli, I
    Seoane, S.
    Cacabelos, R.
    NEW TRENDS IN ALZHEIMER AND PARKINSON RELATED DISORDERS: ADPD 2009, 2009, : 69 - 73
  • [4] PREDICTIVE PERFORMANCE OF A POLYGENIC RISK SCORE FOR INCIDENT ISCHEMIC STROKE IN A HEALTHY OLDER POPULATION
    Neumann, Johannes
    Riaz, Moeen
    Bakshi, Andrew
    Polekhina, Galina
    Thao, Le
    Nelson, Mark
    Woods, Robyn
    Abraham, Gad
    Inouye, Michael
    Reid, Christopher
    Tonkin, Andrew
    Williamson, Jeff
    Donnan, Geoffrey
    Brodtmann, Amy
    Cloud, Geoffrey
    McNeil, John
    Lacaze, Paul
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 1471 - 1471
  • [5] Predictive Performance of a Polygenic Risk Score for Incident Ischemic Stroke in a Healthy Older Population
    Neumann, Johannes T.
    Riaz, Moeen
    Bakshi, Andrew
    Polekhina, Galina
    Thao, Le T. P.
    Nelson, Mark R.
    Woods, Robyn L.
    Abraham, Gad
    Inouye, Michael
    Reid, Christopher M.
    Tonkin, Andrew M.
    Williamson, Jeff D.
    Donnan, Geoffrey A.
    Brodtmann, Amy
    Cloud, Geoffrey C.
    McNeil, John J.
    Lacaze, Paul
    STROKE, 2021, 52 (09) : 2882 - 2891
  • [6] Integrate Molecular Phenome and Polygenic Interaction to Detect the Genetic Risk of Ischemic Stroke
    Li, Xiaoying
    Shi, Weilin
    Zhang, Ruyou
    Zhang, Shuang
    Hou, Wenying
    Wu, Yingnan
    Lu, Rui
    Feng, Yanan
    Tian, Jiawei
    Sun, Litao
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [7] Genetic Susceptibility to Mood Disorders and Risk of Stroke: A Polygenic Risk Score and Mendelian Randomization Study
    Sun, Jiangming
    Borne, Yan
    Edsfeldt, Andreas
    Wang, Yunpeng
    Pan, Mengyu
    Melander, Olle
    Engstrom, Gunnar
    Goncalves, Isabel
    STROKE, 2023, 54 (05) : 1340 - 1346
  • [8] Genome-Wide Polygenic Score and the Risk of Ischemic Stroke in a Prospective Cohort The Hisayama Study
    Hachiya, Tsuyoshi
    Hata, Jun
    Hirakawa, Yoichiro
    Yoshida, Daigo
    Furuta, Yoshihiko
    Kitazono, Takanari
    Shimizu, Atsushi
    Ninomiya, Toshiharu
    STROKE, 2020, 51 (03) : 759 - 765
  • [9] Combined polygenic scores for ischemic stroke risk factors aid risk assessment of ischemic stroke
    Huang, Sarah
    Joshi, Abhishek
    Shi, Zhuqing
    Wei, Jun
    Tran, Huy
    Zheng, S. Lilly
    Duggan, David
    Ashworth, Annabelle
    Billings, Liana
    Helfand, Brian T.
    Qamar, Arman
    Bulwa, Zachary
    Tafur, Alfonso
    Xu, Jianfeng
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 404
  • [10] Polygenic risk of ischemic stroke is associated with cognitive ability
    Harris, Sarah E.
    Malik, Rainer
    Marioni, Riccardo
    Campbell, Archie
    Seshadri, Sudha
    Worrall, Bradford B.
    Sudlow, Cathie L. M.
    Hayward, Caroline
    Bastin, Mark E.
    Starr, John M.
    Porteous, David J.
    Wardlaw, Joanna M.
    Deary, Ian J.
    NEUROLOGY, 2016, 86 (07) : 611 - 618