Imaging and characterizing cells using tomography

被引:33
|
作者
Do, Myan [1 ,2 ,3 ]
Isaacson, Samuel A. [4 ]
McDermott, Gerry [1 ,2 ,3 ]
Le Gros, Mark A. [1 ,2 ,3 ]
Larabell, Carolyn A. [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Xray Tomog, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[4] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Correlated; Cryogenic; Fluorescence; Microscopy; Modeling; Nucleus; Soft X-ray tomography; X-RAY TOMOGRAPHY; BIOLOGICAL SPECIMENS; ELECTRON TOMOGRAPHY; SPATIAL-RESOLUTION; CORRELATED LIGHT; MICROSCOPY; RECONSTRUCTION; FLUORESCENCE; ARCHITECTURE; MOLECULES;
D O I
10.1016/j.abb.2015.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We can learn much about cell function by imaging and quantifying sub-cellular structures, especially if this is done non-destructively without altering said structures. Soft X-ray tomography (SXT) is a high-resolution imaging technique for visualizing cells and their interior structure in 3D. A tomogram of the cell, reconstructed from a series of 2D projection images, can be easily segmented and analyzed. SXT has a very high specimen throughput compared to other high-resolution structure imaging modalities; for example, tomographic data for reconstructing an entire eukaryotic cell is acquired in a matter of minutes. SXT visualizes cells without the need for chemical fixation, dehydration, or staining of the specimen. As a result, the SXT reconstructions are close representations of cells in their native state. SXT is applicable to most cell types. The deep penetration of soft X-rays allows cells, even mammalian cells, to be imaged without being sectioned. Image contrast in SXT is generated by the differential attenuation soft X-ray illumination as it passes through the specimen. Accordingly, each voxel in the tomographic reconstruction has a measured linear absorption coefficient (LAC) value. LAC values are quantitative and give rise to each sub-cellular component having a characteristic LAC profile, allowing organelles to be identified and segmented from the milieu of other cell contents. In this chapter, we describe the fundamentals of SXT imaging and how this technique can answer real world questions in the study of the nucleus. We also describe the development of correlative methods for the localization of specific molecules in a SXT reconstruction. The combination of fluorescence and SXT data acquired from the same specimen produces composite 3D images, rich with detailed information on the inner workings of cells. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 50 条
  • [1] IMAGING AND CHARACTERIZING PHYSIOLOGY AND MORPHOLOGY OF MICROVASCULATURE IN SKIN USING OPTICAL COHERENCE TOMOGRAPHY
    Casper, Malte J.
    Evers, Michael
    Kositratna, Garuna
    Huettmann, Gereon
    Manstein, Dieter
    LASERS IN SURGERY AND MEDICINE, 2018, 50 : S8 - S9
  • [2] Characterizing Pulmonary Damage After Thoracic Irradiation Using Magnetic Resonance Imaging, Positron Emission Tomography, and Computed Tomography
    Krueger, S. A.
    Kane, J.
    Dabjan, M. B.
    Hanna, A.
    Wilson, G. D.
    Guerrero, T. M.
    Marples, B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E563 - E563
  • [3] 3D imaging of cells using electron tomography
    Lefman, J
    Zhang, PJ
    Kessel, M
    Juliani, J
    Hirai, T
    Weis, RM
    Peters, P
    Subramaniam, S
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 279A - 280A
  • [4] Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography
    Kim, Youngkyu
    Kim, Tae-Keun
    Shin, Yeonhee
    Tak, Eunyoung
    Song, Gi-Won
    Oh, Yeon-Mok
    Kim, Jun Ki
    Pack, Chan-Gi
    MOLECULES AND CELLS, 2021, 44 (11) : 851 - 860
  • [5] Diffraction tomography for biological cells imaging using digital holographic microscopy
    Bergoend, I.
    Arfire, C.
    Pavillon, N.
    Depeursinge, C.
    LASER APPLICATIONS IN LIFE SCIENCES, 2010, 7376
  • [6] Characterizing the quantum state of matter using emission tomography
    Walmsley, IA
    Dunn, TJ
    Sweetser, JN
    COHERENCE AND QUANTUM OPTICS VII, 1996, : 73 - 82
  • [7] Characterizing stalagmite composition using hyperspectral imaging
    Raza, Ali
    Voarintsoa, Ny Riavo G.
    Khan, Shuhab D.
    Qasim, Muhammad
    SEDIMENTARY GEOLOGY, 2024, 467
  • [8] Design of an Imaging System for Characterizing Microcracks in Crystalline Silicon Solar Cells Using Light Transflection
    Teo, Teow Wee
    Mahdavipour, Zeinab
    Abdullah, Mohd Zaid
    IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (04): : 1097 - 1104
  • [9] Three-dimensional densitometry imaging of diatom cells using STIM tomography
    Habchi, C.
    Nguyen, D. T.
    Deves, G.
    Incerti, S.
    Lemelle, L.
    Van Vang, P. Le
    Moretto, Ph.
    Ortega, R.
    Seznec, H.
    Sakellariou, A.
    Sergeant, C.
    Simionovici, A.
    Ynsa, M. D.
    Gontier, E.
    Heiss, M.
    Pouthier, T.
    BoudoU, A.
    Rebillat, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 249 : 653 - 659
  • [10] Characterizing supernumerary lacrimal punctum by anterior segment optical coherence tomography imaging
    Das, Joyeeta
    Das, Nibedita
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (01) : 205 - 205