Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease

被引:20
|
作者
Platero, Carlos [1 ]
Lin, Lin [2 ]
Carmen Tobar, M. [1 ]
机构
[1] Univ Politecn Madrid, Hlth Sci Technol Grp, Ronda Valencia 3, Madrid 28012, Spain
[2] Univ Politecn Madrid, Ronda Valencia 3, Madrid 28012, Spain
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; MRI; Hippocampal segmentation; Longitudinal analysis; MILD COGNITIVE IMPAIRMENT; LABEL FUSION METHOD; SEGMENTATION APPLICATION; ASSOCIATION WORKGROUPS; AUTOMATIC SEGMENTATION; NATIONAL INSTITUTE; MRI; ATROPHY; REGISTRATION; PROGRESSION;
D O I
10.1007/s12021-018-9380-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [1] Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease
    Carlos Platero
    Lin Lin
    M. Carmen Tobar
    Neuroinformatics, 2019, 17 : 43 - 61
  • [2] Differential atrophy along the longitudinal hippocampal axis in Alzheimer's disease for the Alzheimer's Disease Neuroimaging Initiative
    Morais-Ribeiro, Rafaela
    Almeida, Francisco C.
    Coelho, Ana
    Oliveira, Tiago Gil
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2024, 59 (12) : 3376 - 3388
  • [3] Alzheimer's disease neurodegeneration markers in Alzheimer's disease neuroimaging initiative
    Andriuta, D.
    Moullart, V.
    Schraen, S.
    Meyer, M. -E.
    Godefroy, O.
    EUROPEAN JOURNAL OF NEUROLOGY, 2015, 22 : 93 - 93
  • [4] Longitudinal neuroimaging measures of hippocampal formation atrophy and biomarkers for early Alzheimer disease
    de Leon, MJ
    DeSanti, S
    Segal, S
    Convit, A
    Rusinek, H
    Saint Louis, LA
    Li, Y
    Li, J
    Mehta, PD
    Zinkowski, R
    Pratico, D
    DeBernardis, J
    Kerkman, D
    Hampel, H
    Clark, C
    NEUROBIOLOGY OF AGING, 2004, 25 : S7 - S7
  • [5] Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer's disease: a prospective cohort study
    Yau, Wai-Ying Wendy
    Tudorascu, Dana L.
    McDade, Eric M.
    Ikonomovic, Snezana
    James, Jeffrey A.
    Minhas, Davneet
    Mowrey, Wenzhu
    Sheu, Lei K.
    Snitz, Beth E.
    Weissfeld, Lisa
    Gianaros, Peter J.
    Aizenstein, Howard J.
    Price, Julie C.
    Mathis, Chester A.
    Lopez, Oscar L.
    Klunk, William E.
    LANCET NEUROLOGY, 2015, 14 (08): : 804 - 813
  • [7] Psychosis of Alzheimer's disease: Neuropsychological and neuroimaging longitudinal study
    D'Antonio, Fabrizia
    Di Vita, Antonella
    Zazzaro, Giulia
    Brusa, Erica
    Trebbastoni, Alessandro
    Campanelli, Alessandra
    Ferracuti, Stefano
    de Lena, Carlo
    Guariglia, Cecilia
    Boccia, Maddalena
    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2019, 34 (11) : 1689 - 1697
  • [8] Longitudinal Changes in Cognition and Cerebrovascular Disease in the Alzheimer's Disease Neuroimaging Initiative
    Carmichael, Owen
    Drucker, David
    Schwarz, Christopher
    Fletcher, Evan
    Martinez, Oliver
    Yoshita, Mitsuhiro
    He, Jing
    DeCarli, Charles
    NEUROLOGY, 2009, 72 (11) : A171 - A171
  • [10] Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia
    Ewers, Michael
    Sperling, Reisa A.
    Klunk, William E.
    Weiner, Michael W.
    Hampel, Harald
    TRENDS IN NEUROSCIENCES, 2011, 34 (08) : 430 - 442