Life cycle greenhouse gas emissions estimation for small hydropower schemes in India

被引:52
|
作者
Varun [1 ]
Prakash, Ravi [2 ]
Bhat, I. K. [3 ]
机构
[1] Natl Inst Technol, Dept Mech Engn, Hamirpur 177005, HP, India
[2] Motilal Nehru Natl Inst Technol, Dept Mech Engn, Allahabad 211004, UP, India
[3] Malaviya Natl Inst Technol, Jaipur 302017, Rajasthan, India
关键词
Renewable energy; Environment impact; Greenhouse gas; Small hydropower; Life cycle emissions; GHG EMISSIONS; GENERATION; ENERGY; WIND;
D O I
10.1016/j.energy.2012.05.052
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents for the first time correlations for greenhouse gas (GHG) emissions from small hydropower schemes in India. In this paper an attempt has been made to develop life cycle GHG emissions correlations for three different types of small hydropower schemes (run-of river, canal based and dam-toe) in India. It has been found out that GHG emissions depend on the head and capacity of the small hydropower project. The results obtained from correlations show good agreement with the estimated results using EIO-LCA (Economic Input-Output-Life Cycle Assessment) technique. These correlations may be useful for the development of new small hydropower (SHP) schemes, as they can be used to predict life cycle GHG emissions based on capacity, head and type of SHP schemes. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:498 / 508
页数:11
相关论文
共 50 条
  • [1] Ship life cycle greenhouse gas emissions
    Chatzinikolaou S.
    Ventikos N.
    Bilgili L.
    Celebi U.B.
    [J]. Chatzinikolaou, Stefanos (stefanos.chatzinikolaou@rina.org), 1600, Springer Verlag (PartF2): : 883 - 895
  • [2] Life-Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China
    Zhang, Qinfen
    Karney, Bryan
    MacLean, Heather L.
    Feng, Jingchun
    [J]. JOURNAL OF INFRASTRUCTURE SYSTEMS, 2007, 13 (04) : 271 - 279
  • [3] Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs
    Kumar, Amit
    Sharma, M. P.
    Yang, Tao
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (11) : 3183 - 3193
  • [4] Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs
    Amit Kumar
    M. P. Sharma
    Tao Yang
    [J]. Stochastic Environmental Research and Risk Assessment, 2018, 32 : 3183 - 3193
  • [5] Life-cycle greenhouse gas emissions of alternative and conventional fuel vehicles in India
    Peshin, Tapas
    Azevedo, Ines M. L.
    Sengupta, Shayak
    [J]. 2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [6] Life cycle greenhouse gas emissions of China shale gas
    Li, Xi
    Mao, Hongmin
    Ma, Yongsong
    Wang, Bing
    Liu, Wenshi
    Xu, Wenjia
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2020, 152
  • [7] Life cycle greenhouse gas emissions of Marcellus shale gas
    Jiang, Mohan
    Griffin, W. Michael
    Hendrickson, Chris
    Jaramillo, Paulina
    VanBriesen, Jeanne
    Venkatesh, Aranya
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (03):
  • [8] Assessing the life cycle greenhouse gas emissions of biorefineries
    Sokka, Laura
    Soimakallio, Sampo
    [J]. LIFE CYCLE ASSESSMENT OF PRODUCTS AND TECHNOLOGIES, 2009, 262 : 17 - 26
  • [9] Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs
    Sherman, Jodi
    Le, Cathy
    Lamers, Vanessa
    Eckelman, Matthew
    [J]. ANESTHESIA AND ANALGESIA, 2012, 114 (05): : 1086 - 1090
  • [10] Greenhouse gas emissions of electricity from hydropower
    Koehler, Jonas
    Roedl, Anne
    Kaltschmitt, Martin
    [J]. WASSERWIRTSCHAFT, 2020, 110 (05) : 41 - 45