Rigidity of mapping class group actions on S1

被引:11
|
作者
Mann, Kathryn [1 ]
Wolff, Maxime [2 ]
机构
[1] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
[2] Univ Paris Diderot, Sorbonne Univ, UPMC Univ Paris 06, CNRS,Inst Math Jussieu Paris Rive Gauche,UMR 7586, Paris, France
关键词
D O I
10.2140/gt.2020.24.1211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mapping class group Mod(g,1) of a surface with one marked point can be identified with an index two subgroup of Aut(pi(1) Sigma(g)). For a surface of genus g >= 2, we show that any action of Mod(g,1) on the circle is either semiconjugate to its natural faithful action on the Gromov boundary of pi(1) Sigma(g), or factors through a finite cyclic group. For g >= 3, all finite actions are trivial. This answers a question of Farb.
引用
收藏
页码:1211 / 1223
页数:13
相关论文
共 50 条