Linear/linear rational spline collocation for linear boundary value problems

被引:7
|
作者
Ideon, Erge [1 ]
Oja, Peeter [2 ]
机构
[1] Estonian Univ Life Sci, Inst Technol, EE-51014 Tartu, Estonia
[2] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
Boundary; value problems; Collocation Rational spline; Convergence; VOLTERRA INTEGRAL-EQUATIONS; MULTISTEP METHODS; CUBIC-SPLINES; INTERPOLATION;
D O I
10.1016/j.cam.2013.11.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the collocation method with linear/linear rational spline S of smoothness class C-1 for the numerical solution of two-point boundary value problems if the solution y of the boundary value problem is a strictly monotone function. We show that for the linear/linear rational splines on a uniform mesh it holds vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h). Established bound of error for the collocation method gives a dependence on the solution of the boundary value problem and its coefficients. We prove also convergence rates vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h(2)), vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h) and the superconvergence of order h(2) for the second derivative of S in certain points. Numerical examples support the obtained theoretical results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [1] Quadratic/linear rational spline collocation for linear boundary value problems
    Ideon, Erge
    Oja, Peeter
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 143 - 158
  • [3] RATIONAL COLLOCATION FOR LINEAR BOUNDARY-VALUE-PROBLEMS
    PEREZACOSTA, F
    CASASUS, L
    HAYEK, N
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (03) : 297 - 305
  • [4] Smoothing transformation and spline collocation for linear fractional boundary value problems
    Kolk, Marek
    Pedas, Arvet
    Tamme, Enn
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 283 : 234 - 250
  • [5] SPLINE COLLOCATION METHOD FOR SOLUTION OF HIGHER ORDER LINEAR BOUNDARY VALUE PROBLEMS
    Rashidinia, J.
    Khazaei, M.
    Nikmarvani, H.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 6 (01): : 38 - 47
  • [6] A high order B-spline collocation method for linear boundary value problems
    Jator, Samuel
    Sinkala, Zachariah
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 100 - 116
  • [7] Spline Solution Of Some Linear Boundary Value Problems
    Lamnii, Abdellah
    Mraoui, Hamid
    Sbibih, Driss
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. APPLIED MATHEMATICS E-NOTES, 2008, 8 : 171 - 178
  • [8] Spline collocation method for solving linear sixth-order boundary-value problems
    Lamnii, Abdelleh
    Mraoui, Hamid
    Sbibih, Driss
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1673 - 1684
  • [9] The Linear Rational Pseudospectral Method for Boundary Value Problems
    Jean-Paul Berrut
    Richard Baltensperger
    [J]. BIT Numerical Mathematics, 2001, 41 : 868 - 879
  • [10] The linear rational pseudospectral method for boundary value problems
    Berrut, JP
    Baltensperger, R
    [J]. BIT NUMERICAL MATHEMATICS, 2001, 41 (05) : 868 - 879