Analytical properties of the Hurwitz-Lerch zeta function

被引:4
|
作者
Nadeem, Raghib [1 ]
Usman, Talha [2 ]
Nisar, Kottakkaran Sooppy [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
机构
[1] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
[2] Lingayas Vidyapeeth, Sch Basic & Appl Sci, Dept Math, Faridabad 121002, Haryana, India
[3] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawaser 11991, Saudi Arabia
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[5] Inst Space Sci, Magurele 077125, Romania
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
关键词
Generalized; Generating functions; Rodrigues formula; 33C05; 33C45; 33C47; 33C90; FEYNMAN-INTEGRALS;
D O I
10.1186/s13662-020-02924-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Remark on the Hurwitz-Lerch zeta function
    Choi, Junesang
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10
  • [2] On extended Hurwitz-Lerch zeta function
    Luo, Min-Jie
    Parmar, Rakesh Kumar
    Raina, Ravinder Krishna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1281 - 1304
  • [3] On the Hurwitz-Lerch zeta-function
    Kanemitsu S.
    Katsurada M.
    Yoshimoto M.
    aequationes mathematicae, 2000, 59 (1) : 1 - 19
  • [4] Remark on the Hurwitz-Lerch zeta function
    Junesang Choi
    Fixed Point Theory and Applications, 2013
  • [5] A generalization of the Hurwitz-Lerch Zeta function
    Choi, Junesang
    Jang, Douk Soo
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 65 - 79
  • [6] Asymptotic expansions of the Hurwitz-Lerch zeta function
    Ferreira, C
    López, JL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 210 - 224
  • [7] A Series Representation for the Hurwitz-Lerch Zeta Function
    Reynolds, Robert
    Stauffer, Allan
    AXIOMS, 2021, 10 (04)
  • [8] A note on extended Hurwitz-Lerch Zeta function
    Ghayasuddin, M.
    Khan, N. U.
    Khan, Waseem A.
    Ahmad, Moin
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 82 - 89
  • [9] Analytical properties of the Hurwitz–Lerch zeta function
    Raghib Nadeem
    Talha Usman
    Kottakkaran Sooppy Nisar
    Dumitru Baleanu
    Advances in Difference Equations, 2020
  • [10] Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta distributions
    Nakamura, Takashi
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)