On the asymptotics of Z-estimators indexed by the objective functions

被引:1
|
作者
Portier, Francois [1 ]
机构
[1] Catholic Univ Louvain, Louvain La Neuve, Belgium
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 01期
关键词
Asymptotic theory; empirical process; semiparametric estimation; weighted regression; Z-estimation; MODELS; RATES;
D O I
10.1214/15-EJS1097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the convergence of Z-estimators theta(eta) is an element of R-p for which the objective function depends on a parameter. that belongs to a Banach space H. Our results include the uniform consistency over H and the weak convergence in the space of bounded R-p-valued functions defined on H. When. is a tuning parameter optimally selected at eta(0), we provide conditions under which eta(0) can be replaced by an estimated eta without affecting the asymptotic variance. Interestingly, these conditions are free from any rate of convergence of eta to eta(0) but require the space described by eta to be not too large in terms of bracketing metric entropy. In particular, we show that Nadaraya-Watson estimators satisfy this entropy condition. We highlight several applications of our results and we study the case where. is the weight function in weighted regression.
引用
收藏
页码:464 / 494
页数:31
相关论文
共 50 条