Using Mobile Phone Data Analysis for the Estimation of Daily Urban Dynamics

被引:0
|
作者
Bachir, Danya [1 ,2 ]
Gauthier, Vincent [2 ]
El Yacoubi, Mounim [2 ]
Khodabandelou, Ghazaleh [2 ]
机构
[1] IRT SystemX, Palaiseau, France
[2] Univ Paris Saclay, CNRS, Telecom SudParis, SAMOVAR, Paris, France
关键词
Mobile Phone Data; Big Data; Data Analysis; Machine Learning; Population Monitoring; Urban Dynamics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The estimation of population dynamics has become a crucial public transport planning issue. The scope of this paper is the estimation of time variant population densities at fine-grained level using geolocalized mobile phone (MP) data. After preprocessing anonymized aggregated MP data of the complete Greater Paris area, we apply spatial mapping methods to project the MPs locations from network cells to census blocks. Prior to the calibration of MP densities with national census population (static model), we estimate blocks land-use to filter out noisy areas. Our loglinear regression model achieves high performance regarding several metrics, and our hybrid mapping method grants competitive performance with respect to the state of the art. Following our static parameters interpretation, we provide a novel relation for daily population dynamics. We validate this dynamic model with sport events attendances.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Using mobile phone data to study dynamics of rural-urban mobility
    Sanya, Rahman
    Mubangizi, Martin
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 178 - 183
  • [2] Evaluation of urban daily routines by using Mobile Phone Indicators
    Pinter, Gergo
    Felde, Imre
    [J]. IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2019), 2019, : 315 - 319
  • [3] A Dynamic Model for Urban Population Density Estimation Using Mobile Phone Location Data
    Dan, YuFang
    He, Zhongshi
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, : 277 - 281
  • [4] Urban Travel Time Estimation in Greater Maputo Using Mobile Phone Big Data
    Batran, Mohamed
    Arai, Ayumi
    Kanasugi, Hiroshi
    Cumbane, Silvino
    Grachane, Cecilio
    Sekimoto, Yoshihide
    Shibasaki, Ryosuke
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON BUSINESS INFORMATICS (IEEE CBI 2018), VOL 2, 2018, : 122 - 127
  • [5] Urban Traffic Commuting Analysis Based on Mobile Phone Data
    Dong, Honghui
    Ding, Xiaoqing
    MingchaoWu
    Shi, Yan
    Jia, Limin
    Qin, Yong
    Chu, Lianyu
    [J]. 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 611 - 616
  • [6] Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data
    Yu, Xiaonan
    Ivey, Cesunica
    Huang, Zhijiong
    Gurram, Sashikanth
    Sivaraman, Vijayaraghavan
    Shen, Huizhong
    Eluru, Naveen
    Hasan, Samiul
    Henneman, Lucas
    Shi, Guoliang
    Zhang, Hongliang
    Yu, Haofei
    Zheng, Junyu
    [J]. ENVIRONMENT INTERNATIONAL, 2020, 141 (141)
  • [7] Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics
    Yang, Chao
    Zhang, Yuliang
    Zhan, Xianyuan
    Ukkusuri, Satish V.
    Chen, Yifan
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [8] How friends share urban space: An exploratory spatiotemporal analysis using mobile phone data
    Xu, Yang
    Belyi, Alexander
    Bojic, Iva
    Ratti, Carlo
    [J]. TRANSACTIONS IN GIS, 2017, 21 (03) : 468 - 487
  • [9] Detecting latent urban mobility structure using mobile phone data
    Wang, Zi-Jia
    Chen, Zhi-Xiang
    Wu, Jiang-Yue
    Yu, Hao-Wei
    Yao, Xiang-Ming
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (30):
  • [10] Urban Sensing Using Mobile Phone Network Data: A Survey of Research
    Calabrese, Francesco
    Ferrari, Laura
    Blondel, Vincent D.
    [J]. ACM COMPUTING SURVEYS, 2015, 47 (02)