共 50 条
Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements
被引:422
|作者:
Liang, GG
Chan, MF
Tomigahara, Y
Tsai, YC
Gonzales, FA
Li, E
Laird, PW
Jones, PA
机构:
[1] Univ So Calif, Keck Sch Med, Kenneth Norris Jr Comprehens Canc Ctr, Dept Urol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Keck Sch Med, Dept Biochem & Mol Biol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Keck Sch Med, Dept Surg, Los Angeles, CA 90089 USA
[4] Harvard Univ, Massachusetts Gen Hosp, Dept Med, Cardiovasc Res Ctr, Charlestown, MA 02129 USA
关键词:
D O I:
10.1128/MCB.22.2.480-491.2002
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dumt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dumt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells.
引用
收藏
页码:480 / 491
页数:12
相关论文