Maximum likelihood identification of glint noise

被引:13
|
作者
Wu, WR
机构
[1] Dept. of Communication Engineering, National Chiao Tung University, Hsinchu
关键词
D O I
10.1109/7.481248
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
If the non-Gaussian distribution function of radar glint noise is known, the Masreliez filter can be applied to improve target tracking performance. We investigate the glint identification problem using the maximum likelihood (ML) method. Two models for the glint distribution are used, a mixture of two Gaussian distributions and a mixture of a Gaussian and a Laplacian distribution An efficient initial estimate method based on the QQ-plot is also proposed. Simulations show that the ML estimates converge to truths.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 50 条
  • [1] MAXIMUM LIKELIHOOD IDENTIFICATION OF NOISE STATISTICS AND ADAPTIVE PREDICTION
    KODA, M
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1975, 18 (1-2) : 16 - 39
  • [2] Maximum Likelihood Identification of Inertial Sensor Noise Model Parameters
    Nikolic, Janosch
    Furgale, Paul
    Melzer, Amir
    Siegwart, Roland
    IEEE SENSORS JOURNAL, 2016, 16 (01) : 163 - 176
  • [3] Maximum Likelihood identification of Wiener-Hammerstein system with process noise
    Giordano, Giuseppe
    Sjoberg, Jonas
    IFAC PAPERSONLINE, 2018, 51 (15): : 401 - 406
  • [4] Maximum likelihood least squares identification for systems with autoregressive moving average noise
    Wang, Wei
    Ding, Feng
    Dai, Jiyang
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (05) : 1842 - 1853
  • [5] Maximum Likelihood pqEDMD Identification
    Garcia-Tenorio, Camilo
    Wouwer, Alain Vande
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 540 - 545
  • [6] UNIQUENESS OF MAXIMUM LIKELIHOOD IDENTIFICATION
    SODERSTROM, T
    AUTOMATICA, 1975, 11 (02) : 193 - 197
  • [7] ON MAXIMUM LIKELIHOOD METHOD OF IDENTIFICATION
    BOHLIN, T
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) : 41 - &
  • [8] Online glint noise identification for tracking manoeuvring targets
    Wu, WR
    Wu, KG
    ELECTRONICS LETTERS, 1999, 35 (09) : 742 - 743
  • [9] Inclusion of noise in a maximum likelihood classifier
    Ballard, JP
    AUTOMATIC TARGET RECOGNITION VIII, 1998, 3371 : 531 - 537
  • [10] Maximum Likelihood identification for Linear Dynamic Systems with finite Gaussian mixture noise distribution
    Bittner, Gustavo
    Orellana, Rafael
    Carvajal, Rodrigo
    Aguero, Juan C.
    2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2019,